

1

[Unit 1: Introduction]

Web Technology (CSC-353)

Jagdish Bhatta

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

2

 Introduction::

 Web technologies related to the interface between web servers and their clients. This

information includes markup languages, programming interfaces and languages, and

standards for document identification and display. In general web technology incorporates

tools and techniques for web development.

Web Development is a broad term for the work involved in developing a web site for

World Wide Web. This can include web design, web content development, client liaison,

client-side/server-side scripting, web server and network security configuration, and e-

commerce development. However, among web professionals, "web development" usually

refers to the main non-design aspects of building web sites: writing markup and coding.

Web development can range from developing the simplest static single page of plain text

to the most complex web-based internet applications, electronic businesses, or social

network services.

Web design is a broad term used to encompass the way that content (usually hypertext or

hypermedia) is delivered to an end-user through the World Wide Web, using a web

browser or other web-enabled software is displayed. The intent of web design is to create a

website—a collection of online content including documents and applications that reside

on a web servers. A website may include text, images, sounds and other content, and may

be interactive.

For the typical web sites, the basic aspects of design are:

- The content: the substance, and information on the site should be relevant to the site and

should target the area of the public that the website is concerned with.

- The usability: the site should be user-friendly, with the interface and navigation simple

and reliable.

- The appearance: the graphics and text should include a single style that flows

throughout, to show consistency. The style should be professional, appealing and relevant.

- The structure: of the web site as a whole.

Internet and its Evolution:

Internet is a short form of the technical term internetwork, the result of interconnecting

computer networks with special gateways or routers. The Internet is also often referred to

as the Net. The Internet is a massive network of networks, a networking infrastructure. It

connects millions of computers together globally, forming a network in which any

computer can communicate with any other computer as long as they are both connected to

the Internet. Information that travels over the Internet does so via a variety of languages

known as protocols. The Internet is loosely connected compared with the randomized

graph.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

3

The Internet is a globally distributed network comprising many voluntarily interconnected

autonomous networks. It operates without a central governing body. However, to maintain

interoperability, all technical and policy aspects of the underlying core infrastructure and

the principal name spaces are administered by the Internet Corporation for Assigned

Names and Numbers (ICANN).

The history of the Internet starts in the 1950s and 1960s with the development of

computers. This began with point-to-point communication between mainframe computers

and terminals, expanded to point-to-point connections between computers and then early

research into packet switching.

Since the mid-1990s the Internet has had a drastic impact on culture and commerce,

including the rise of near instant communication by electronic mail, instant messaging,

Voice over Internet Protocol (VoIP) "phone calls", two-way interactive video calls, and the

World Wide Web with its discussion forums, blogs, social networking, and online

shopping sites. (Just go through the brief history yourself)

World Wide Web:

WWW is a system of interlinked hypertext documents accessed via the Internet. The

World Wide Web, or simply Web, is a way of accessing information over the medium of

the Internet. It is an information-sharing model that is built on top of the Internet. The Web

uses the HTTP protocol, only one of the languages spoken over the Internet, to transmit

data. Web services, which use HTTP to allow applications to communicate in order to

exchange business logic, use the Web to share information. The Web also utilizes

browsers, such as Internet Explorer or Firefox, to access Web documents called Web pages

that are linked to each other via hyperlinks. Web documents also contain graphics, sounds,

text and video.

The Web is one of the services that runs on the Internet. It is a collection of textual

documents and other resources, linked by hyperlinks and URLs, transmitted by web

browsers and web servers. The Web is just one of the ways that information can be

disseminated over the Internet, so the Web is just a portion of the Internet. In short, the

Web can be thought of as an application "running" on the Internet

What is Hypertext?

Hypertext provides the links between different documents and different document types. In

a hypertext document, links from one place in the document to another are included with

the text. By selecting a link, you are able to jump immediately to another part of the

document or even to a different document. In the WWW, links can go not only from one

document to another, but from one computer to another

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

4

World Wide Consortium:

The World Wide Web Consortium (W3C) is the main international standards

organization for the World Wide Web. W3C was created to ensure compatibility and

agreement among industry members in the adoption of new standards. Prior to its creation,

incompatible versions of HTML were offered by different vendors, increasing the potential

for inconsistency between web pages. The consortium was created to get all those vendors

to agree on a set of core principles and components which would be supported by

everyone.

Web Page:

A web page is a document or information resource that is suitable for the World Wide

Web and can be accessed through a web browser and displayed on a monitor or mobile

device. This information is usually in HTML or XHTML format, and may provide

navigation to other web pages via hypertext links. Web pages frequently subsume other

resources such as style sheets, scripts and images into their final presentation.

Web pages may be retrieved from a local computer or from a remote web server. The web

server may restrict access only to a private network, e.g. a corporate intranet, or it may

publish pages on the World Wide Web. Web pages are requested and served from web

servers using Hypertext Transfer Protocol (HTTP).

Web pages may consist of files of static text and other content stored within the web

server's file system (static web pages), or may be constructed by server-side software when

they are requested (dynamic web pages). Client-side scripting can make web pages more

responsive to user input once on the client browser.

Web Site:

A website or simply site, is a collection of related web pages containing images, videos or

other digital assets. A website is hosted on at least one web server, accessible via a

network such as the Internet or a private local area network through an Internet address

known as a Uniform Resource Locator. All publicly accessible websites collectively

constitute the World Wide Web. Web sites can be static or dynamic.

Static Website:

A static website is one that has web pages stored on the server in the format that is sent to a

client web browser. It is primarily coded in Hypertext Markup Language, HTML.

Simple forms or marketing examples of websites, such as classic website, a five-page

website or a brochure website are often static websites, because they present pre-defined,

static information to the user. This may include information about a company and its

products and services via text, photos, animations, audio/video and interactive menus and

navigation.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

5

This type of website usually displays the same information to all visitors. Similar to

handing out a printed brochure to customers or clients, a static website will generally

provide consistent, standard information for an extended period of time. Although the

website owner may make updates periodically, it is a manual process to edit the text,

photos and other content and may require basic website design skills and software.

In summary, visitors are not able to control what information they receive via a static

website, and must instead settle for whatever content the website owner has decided to

offer at that time.

Dynamic Website:

A dynamic website is one that changes or customizes itself frequently and automatically,

based on certain criteria.

Dynamic websites can have two types of dynamic activity: Code and Content. Dynamic

code is invisible or behind the scenes and dynamic content is visible or fully displayed.

The first type is a web page with dynamic code. The code is constructed dynamically on

the fly using active programming language instead of plain, static HTML.

The second type is a website with dynamic content displayed in plain view. Variable

content is displayed dynamically on the fly based on certain criteria, usually by retrieving

content stored in a database

Domain Names, DNS, and URLs:

 IP addresses are not convenient for users to remember easily. So an IP address can

be represented by a natural language convention called a domain name

 Domain name system (DNS) translates domain names into IP addresses. DNS is

the “phone book” for the Internet, it maps between host names and IP addresses.

 A uniform resource locator (URL), which is the address used by a Web browser to

identify the location of content on the Web, also uses a domain name as part of the

URL.

 Syntax: scheme: scheme-depend-part. Example: In http://www.example.com/, the

scheme is http.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

6

HTTP:

 HTTP is based on the request-response communication model:

o Client sends a request

o Server sends a response

o HTTP is a stateless protocol: where the protocol does not require the server

to remember anything about the client between requests.

 Normally implemented over a TCP connection (80 is standard port number for

HTTP)

 The following is the typical browser-server interaction using HTTP:

1. User enters Web address in browser

2. Browser uses DNS to locate IP address

3. Browser opens TCP connection to server

4. Browser sends HTTP request over connection

5. Server sends HTTP response to browser over connection

6. Browser displays body of response in the client area of the browser window

Client/Server Computing:

 A model of computing in which powerful personal computers are connected in a

network together with one or more servers

 Client is a powerful personal computer that is part of a network; service requester

 Server is a networked computer dedicated to common functions that the client

computers on the network need; service provider

 Web is based on client/server technology. Web servers are included as part of a

larger package of internet and intranet related programs for serving e-mail,

downloading requests for FTP files and building and publishing web pages.

Typically the e-commerce customer is the client and the business is the server. In

the client/ server model single machine can be both client and the server The client/

server model utilises a database server in which RDBMS user queries can be

answered directly by the server.

 The client/ server architecture reduces network traffic by providing a query response

to the user rather than transferring total files. The client/ server model improves

multi-user updating through a graphical user interface (GUI) front end to the shared

database. In client/ server architectures client and server typically communicate

through statements made in structured query language (SQL).

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

7

Fig: Client/ Server Model

Web Clients:

It typically refers to the Web browser in the user's machine. It is a software application for

retrieving, presenting, and traversing information resources on the web server. It is used to

create a HTTP request message and for processing the HTTP response message.

User agent: Any web client is designed to directly support user access to web servers is

known as user agent. Web browsers can run on desktop or laptop computers. Some of the

browsers are: Internet Explorer, Mozilla, FireFox, Chrome, Safari, Opera, Netscape

Navigator.

Web Browsers:

Browsers are software programs that allow you to search and view the many different

kinds of information that's available on the World Wide Web. The information could be

web sites, video or audio information.

Status Bar: You will find the status bar at the very bottom of your browser window. It

basically tells you what you are doing at the moment. Mainly, it shows you load speed and

the URL address of whatever your mouse is hovering over.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

8

Title Bar: You will find this bar at the absolute top of your browser and in will be the

colour blue for the major browsers. The purpose of the Title bar is to display the title of the

web page that you are currently viewing.

Menu Bar: The menu bar contains a set of dropdown menus

Navigational Tool: A bar contains standard push button controls that allow the user to

return to a previously viewed page, to reverse and refresh the page, to display the home

page and to print the page etc.

Toolbar Icons: You will find the Toolbar directly under the Title Bar. The Toolbar is

where you will find the back button, home button and the refresh button etc.

Client Area: It is a display window which is the space in which you view the website.

Scroll Bars: The Scroll bars, usually located to the right of the Display Window, allows

you to "scroll" (move down or up the web page) so you can view information that is below

or above what is currently in the Display Window.

Web Servers:

Basic functionality:

 It receives HTTP request via TCP

 It maps Host header to specific virtual host (one of many host names sharing an IP

address)

 It maps Request-URI to specific resource associated with the virtual host

o File: Return file in HTTP response

o Program: Run program and return output in HTTP response

 It maps type of resource to appropriate MIME type and use to set Content-Type

header in HTTP response

 It Logs information about the request and response

 All e-commerce site require basic Web server software to answer requests from

customers like ;

o Apache

 Leading Web server software (47% of market)

 Works with UNIX, Linux , Windows OSs

o Microsoft’s Internet Information Server (IIS)

 Second major Web server software (25% of market)

 Windows-based

Client-Side Scripting:

 Client-side scripting generally refers to writing the class of computer programs

(scripts) on the web that are executed at client-side, by the user's web browser,

instead of server-side (on the web server). Usually scripts are embedded in the

HTML page itself.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

9

 JavaScript , VBScript, Jscript, Java Applets etc. are the examples of client side

scripting technologies. JavaScript is probably the most widely used client-side

scripting language.

 Client-side scripts have greater access to the information and functions available on

the user's browser, whereas server-side scripts have greater access to the

information and functions available on the server. Upon request, the necessary files

are sent to the user's computer by the web server (or servers) on which they reside.

The user's web browser executes the script, then displays the document, including

any visible output from the script.

 Client-side scripts may also contain instructions for the browser to follow in

response to certain user actions, (e.g., clicking a button). Often, these instructions

can be followed without further communication with the server.

Server-Side Scripting:

 Includes writing the applications executed by the server at run-time to process

client input or generate document in response to client request. So server side script

consists the directives embedded in Web page for server to process before passing

page to requestor.

 It is usually used to provide interactive web sites that interface to databases or other

data stores.

 This is different from client-side scripting where scripts are run by the viewing web

browser, usually in JavaScript. The primary advantage to server-side scripting is

the ability to highly customize the response based on the user's requirements,

access rights, or queries into data stores.

 PHP, JSP, ASP…. etc, are the server side scripting technologies.

Web 2.0:

The term Web 2.0 is associated with web applications that facilitate participatory

information sharing, interoperability, user-centered design, and collaboration on the

World Wide Web. A Web 2.0 site allows users to interact and collaborate with each other

in a social media dialogue as creators of user-generated content in a virtual community, in

contrast to websites where users are limited to the passive viewing of content that was

created for them. Examples of Web 2.0 include social networking sites, blogs, wikis, video

sharing sites, hosted services, web applications.

I think following portion you have studied in Data Communication (So Self Study)

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

10

SMTP:

Simple Mail Transfer Protocol (SMTP) is an Internet standard for electronic mail (e-

mail) transmission across Internet Protocol (IP) networks.

POP:

In computing, the Post Office Protocol (POP) is an application-layer Internet standard

protocol used by local e-mail clients to retrieve e-mail from a remote server over a TCP/IP

connection.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

11

HTML

HTML stands for hypertext markup language. It is not a programming language. A

markup language specifies the layout and style of a document. A markup language consists

of a set of markup tags. HTML uses markup tags to describe web pages. HTML tags are

keywords surrounded by angle brackets like <html>. Most HTML tags normally come in

pairs like and . The first tag is called the start tag (or opening tag) and the

second tag is called the end tag (or closing tag). HTML documents describe Web pages.

HTML documents contain HTML tags and plain text. HTML documents are also called

Web pages. A web browser read HTML documents and displays them as Web pages. The

browser does not display the HTML tags, but uses the tags to interpret the content of the

page. A simple HTML document is given below:

<html>

<head>

<title>This is my first web page</title>

</head>

<body>

<h1>My first heading</h1>

<p>My first paragraph</p>

</body>

</html>

Save this page with .html or .htm extension. However, it is good practice to use .htm

extension.

HTML Elements
HTML documents are defined by HTML elements. An HTML element is everything from

the start tag to the end tag. For example, <p>My first paragraph</p>. An HTML element

consists of start tag, end tag, and element content. The element content is everything

between the start tag and end tag. Empty elements are closed in the start tag. Most HTML

elements can have attributes. For example, src attribute of img tag.

HTML Attributes

Attributes provide additional information about HTML elements. Attributes are always

specified in the start tag. Attributes come in name/value pair like name = “value”. For

example, HTML links are defined with <a> tag and the link address is provided as an

attribute href like cdcsit.

Note: Always quote attribute values and use lowercase attributes.

HTML Headings

HTML headings are defined with the <h1> to <h6> tags. <h1> displays largest text and

<h6> smallest. For example, <h1>My first heading</h1>.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

12

HTML Paragraphs

HTML paragraphs are defined with <p> tag. For example, <p>My first paragraph</p>.

HTML Rules (Lines)

We use <hr /> tag to create horizontal line.

HTML Comments

We use comments to make our HTML code more readable and understandable. Comments

are ignored by the browser and are not displayed. Comments are written between <!-- and -

->. For example, <!-- This is a comment -->.

HTML Line Breaks

If you want a new line (line break) without starting a new paragraph, use
 tag.

HTML Formatting Tags
We use different tags for formatting output. For example, is used for bold and <i> is

used for italic text. Some other tags are <big>, <small>, <sup>, <sub> etc.

HTML Styles

It is a new HTML attribute. It introduces CSS to HTML. The purpose of style attribute is

to provide a common way to style all HTML elements. For example, <body style =

“background-color:yellow”>, <p style = “font-family:courier new; color:red; font-

size:20px”>, <h1 style = “text-align:center”> etc.

HTML Links

A link is the address to a resource on the web. HTML links are defined using an anchor tag

(<a>). We can use this tag to point to a resource (an HTML page, an image, a sound file, a

movie etc.) and an address inside a document.

We can use href attribute to define the link address. For example, <a href =

“http://www.cdcsit.tu.edu.np”>cdcsit.

We can use target attribute to define where the linked document will be opened. For

example, cdcsit will open

the document in a new window.

We can use name attribute to define a named anchor inside a HTML document. Named

anchor are invisible to the reader. For example, Any content

defines a named anchor and we use the syntax Any content to link

to the named anchor.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

13

We can also use named anchor to link to some content within another document. For

example, Jump to the Useful

Tips section.

HTML Images

HTML images are defined with tag. To display an image on a page, you need to

use the src attribute. We can also use width and height attributes with img tag. For

example, .

We can use alt attribute to define an alternate text for an image. For example, <img src

= “photo1.jpg” width = “104” height = “142” alt = “My best poto”/>. The "alt" attribute
tells the reader what he or she is missing on a page if the browser can't load images.
The browser will then display the alternate text instead of the image. It is a good
practice to include the "alt" attribute for each image on a page, to improve the display
and usefulness of your document for people who have text-only browsers.

HTML Tables

Tables are defined with the <table> tag. A table is divided into rows (with the <tr> tag),

and each row is divided into data cells (with the <td> tag). The letters td stands for "table

data," which is the content of a data cell. A data cell can contain text, images, lists,

paragraphs, forms, horizontal rules, tables, etc. For example,

<table border="1">

<tr>

<td>row 1, cell 1</td>

<td>row 1, cell 2</td>

</tr>

<tr>

<td>row 2, cell 1</td>

<td>row 2, cell 2</td>

</tr>

</table>

Output:

row 1, cell 1 row 1, cell 2

row 2, cell 1 row 2, cell 2

We use border attribute to display table with border as shown in the above example.

Headings in a table are defined with <th> tag. For example,
<table border="1">

<tr>

<th>Heading</th>

<th>Another Heading</th>

</tr>

<tr>

<td>row 1, cell 1</td>

<td>row 1, cell 2</td>

</tr>

<tr>

<td>row 2, cell 1</td>

<td>row 2, cell 2</td>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

14

</tr>

</table>

Output:

Heading Another Heading

row 1, cell 1 row 1, cell 2

row 2, cell 1 row 2, cell 2

We can use <caption> tag inside a <table> to display caption for a table. We can define

table cells that span more than one row or one column using colspan and rowspan

attributes respectively. For example, <td colspan = “2”>Data</td>. We can use

cellpadding and cellspacing attributes to create white space between the cell content and

its borders, and to increase the distance between cells respectively. For example, <table

border="1" cellpadding="10"> and <table border="1" cellspacing="10">. We can use align

attribute to align the contents of a cell. For example, <td align = “left”>Data</td>.

HTML Lists

HTML supports ordered, unordered and definition lists. Ordered lists items are marked

with numbers, letter etc. We use tag for ordered list and each list item starts with

tag. For example,

<ol type="A">

 Apples

 Bananas

 Lemons

 Oranges

Output:

A. Apples

B. Bananas

C. Lemons

D. Oranges

If we do not use type attribute, items are marked with numbers. We use type = “a” for

lowercase letters list, type = “I” for roman numbers list, and type = “i” for lowercase

numbers list.

Unordered lists items are marked with bullets. We use tag for unordered list and each

list item starts with tag. For example,

<ul type="disc">

 Apples

 Bananas

 Lemons

 Oranges

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

15

Output:

 Apples

 Bananas

 Lemons

 Oranges

If we do not use type attribute, items are marked with discs. We use type = “circle” for

circle bullets list, and type = “square” for square bullets list.

Definition list is the list of items with a description of each item. We use <dl> tag for

definition list, <dt> for definition term, and <dd> for definition description. For example,

<dl>

 <dt>Coffee</dt>

 <dd>Black hot drink</dd>

 <dt>Milk</dt>

 <dd>White cold drink</dd>

</dl>

Output:

Coffee

Black hot drink

Milk

White cold drink

HTML Forms

Forms are used to select different types of user input. A form is an area that contains

different form elements (like text fields, text area fields, drop-down menus, radio buttons,

checkboxes etc.). Form elements are elements that allow the user to enter information in a

form. A form is defined with the <form> tag. For example,

<form>

 input elements

</form>

The most commonly used form tag is <input> tag. The type of input is specified with the

type attribute within the <input> tag. For example,

<form>

 First name:

 <input type="text" name="firstname" />

 Last name:

 <input type="text" name="lastname" />

</form>

Output:

First name:

Last name:

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

16

Another input type is radio button. Radio buttons are used when you want the user to

select one of a limited number of choices. For example,

<form>

<input type="radio" name="sex" value="male" /> Male

<input type="radio" name="sex" value="female" /> Female

</form>

Output:

Male

Female

Another input type is checkboxes. Checkboxes are used when you want to select one or

more options of a limited number of choices. For example,

<form>

I have a bike:

<input type="checkbox" name="vehicle" value="Bike" />

I have a car:

<input type="checkbox" name="vehicle" value="Car" />

I have an airplane:

<input type="checkbox" name="vehicle" value="Airplane" />

</form>

Output:

I have a bike:

I have a car:

I have an airplane:

Another input type is submit button. When the user clicks on the "Submit" button, the

content of the form is sent to the server. The form's action attribute defines the name of

the file to send the content to. The file defined in the action attribute usually does

something with the received input. For example,

<form name="input" action=" submit.php" method="get">

 Username:

 <input type="text" name="user" />

 <input type="submit" value="Submit" />

</form>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

17

Output:

Username:
Submit

If you type some characters in the text field above, and click the "Submit" button, the

browser will send your input to a page called "submit.php". The page will show you the

received input.

Note: You can use other different form elements as well.

The method attribute of <form> tag specifies how to send form-data (the form-data is sent

to the page specified in the action attribute). We can use “get” and “post” as values of

method attribute. When we use get, form-data can be sent as URL variables and when we

use post, form-data are sent as HTTP post.

Notes on the "get" method:

 This method appends the form-data to the URL in name/value pairs

 There is a limit to how much data you can place in a URL (varies between

browsers), therefore, you cannot be sure that all of the form-data will be correctly

transferred

 Never use the "get" method to pass sensitive information! (password or other

sensitive information will be visible in the browser's address bar)

Notes on the "post" method:

 This method sends the form-data as an HTTP post transaction

 The "post" method is more robust and secure than "get", and "post" does not have

size limitations

We can create a simple drop-down box on an HTML page. A drop-down box is a

selectable list. See code below:

<select name="cars">
<option value="volvo">Volvo</option>
<option value="saab">Saab</option>
<option value="fiat">Fiat</option>
<option value="audi">Audi</option>
</select>

Output:

Volvo

HTML Color

HTML colors are displayed using RED, GREEN, and BLUE light. Colors are defined

using hexadecimal (hex) notation for combination of red, green, and blue color values

(RGB). The lowest value that can be given to one of the light sources is 0 (hex 00) and the

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

18

highest values is 255 (hex FF). We can use HEX (e.g. #2000FF) as well as RGB (e.g.

rgb(32, 0, 255)) values to define different colors.

The combination of Red, Green and Blue values from 0 to 255 gives a total of more than

16 million different colors to play with (256 x 256 x 256).

We can also use color names instead of hex and rgb values. The World Wide Web

Consortium (W3C) has listed 16 valid color names for HTML and CSS: aqua, black, blue,

fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow.

Some examples are given below:

<body style = "background:rgb(12, 32, 255)">

<body style = "background:#0008FF>

<body style = "background:red">

HTML Frames

We can use frames to display more than one web page in the same browser window. Each

HTML document is called a frame, and each frame is independent of the others. The

disadvantages of using frames are:

 The web developer must keep track of more HTML documents

 It is difficult to print the entire page

We use <frameset> tag to define how to divide the window into frames. Each frameset

defines a set of rows or columns. Within frameset, we use <frame> tag to define what

HTML document to put into each frame.

If a frame has visible borders, the user can resize it by dragging the border. To prevent a

user from doing this, you can add noresize="noresize" to the <frame> tag. Add the

<noframes> tag for browsers that do not support frames.

Important: You cannot use the <body></body> tags together with the

<frameset></frameset> tags. However, if you add a <noframes> tag containing some text

for browsers that do not support frames, you will have to enclose the text in

<body></body> tags.

Example 1:

<frameset cols="25%,50%,25%">

 <frame src="frame_a.htm" noresize="noresize"/>

 <frame src="frame_b.htm"/>

 <frame src="frame_c.htm"/>

<noframes>

<body>Your browser does not handle frames!</body>

</noframes>

</frameset>

Example 2:

<frameset rows="25%,50%,25%">

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

19

 <frame src="frame_a.htm"/>

 <frame src="frame_b.htm"/>

 <frame src="frame_c.htm"/>

</frameset>

Example 3: Mixed Frameset

<frameset rows="50%,50%">

 <frame src="frame_a.htm"/>

 <frameset cols="25%,75%">

 <frame src="frame_b.htm"/>

 <frame src="frame_c.htm"/>

 </frameset>

</frameset>

HTML Fonts

The tag in HTML is deprecated. It is supposed to be removed in a future version of

HTML. For example,

<p>

 This is a paragraph.

</p>

HTML Character Entities

Character entities are replaced with reserved characters. A character entity looks

&entity_name OR &#entity_number. Some commonly used character entities are:

Result Description Entity Name Entity Number

 non-breaking space

< less than < <

> greater than > >

& Ampersand & &

¢ Cent ¢ ¢

£ Pound £ £

¥ Yen ¥ ¥

€ Euro € €

© Copyright © ©

 registered trademark ® ®

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

20

HTML Head

The head element contains general information, also called meta-information, about a

document. The elements inside the head element should not be displayed by a browser.

According to the HTML standard, only a few tags are legal inside the head section. These

are: <base>, <link>, <meta>, <title>, <style>, and <script>.

You must use this element and it should be used just once. It must start immediately after

the opening <html> tag and end directly before the opening <body> tag.

HTML Meta

HTML includes a meta element that goes inside the head element. The purpose of the meta

element is to provide meta-information about the document. Meta elements are purely used

for search engine’s use and to provide some additional information about your pages. We

use three attributes (name, content, and http-equiv) with <meta> tag.

We use name = “keywords” to provide information for a search engine. If the keywords

you have chosen are the same as the ones they have put in, you come up in the search

engine’s result pages. For example,

<meta name="keywords" content="HTML, DHTML, CSS, XML, XHTML, JavaScript" />

We use name = “description” to define a description of your page. It is sort summary of

the content of the page. Depending on the search engine, this will be displayed along with

the title of your page in an index. For example,

<meta name="description" content="Free Web tutorials on HTML, CSS, XML, and

XHTML" />

We use name = “generator” to define a description for the program you used to write

your pages. For example,

<meta name="generator" content="Homesite 4.5" />

We use name = “author” and name = “copyright” for author and copyright details. For

example,

<meta name="author" content="W3schools" />

<meta name="copyright" content="W3schools 2005" />

We use name = “expires” to give the browsers a data, after which the page is deleted from

the browsers cache, and must be downloaded again. This is useful if you want to make sure

your visitors are reading the most current version of a page. For example,

<meta name="expires" content="13 July 2008" />

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

21

We use http-equiv = “expires” to refresh itself to the most current version or change to

another location (page) entirely after some time. This is useful if you’ve moved a page to a

new url and want any visitors to the old address to be quietly sent to the new location. For

example,

<meta http-equiv = "refresh" content="5;url=http://www.tu.edu.np" />

Here, the number is the number of seconds to wait before changing to the new page.

Setting it to 0 results in an instant redirect.

HTML Div

The <div> element defines logical divisions within the document. When you use a <div>

element, you are indicating that the enclosed content is specific section of the page and you

can format the section with CSS (Cascading Style Sheet). For example,

<div style="background-color:orange;text-align:center">

 <p>Navigation section</p>

</div>

<div style="border:1px solid black">

 <p>Content section</p>

</div>

HTML Events

Events trigger actions in the browser, like starting a JavaScript when a user clicks on an

HTML element. Below is a list of attributes that can be inserted to HTML tags to define

event actions. These HTML events are given below:

Window Events (Only valid in body and frameset elements)

Attribute Value Description

Onload Script Script to be run when a document loads

Onunload Script Script to be run when a document unloads

Form Element Events (Only valid in form elements)

Attribute Value Description

Onchange Script Script to be run when the element changes

Onsubmit Script Script to be run when the form is submitted

Onreset Script Script to be run when the form is reset

Onselect script Script to be run when the element is selected

Onblur script Script to be run when the element loses focus

Onfocus script Script to be run when the element gets focus

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

22

Keyboard Events (Not valid in base, bdo, br, frame, frameset, head, html, iframe, meta,

param, script, style, and title elements)

Attribute Value Description

Onkeydown script What to do when key is pressed

Onkeypress script What to do when key is pressed and released

Onkeyup script What to do when key is released

Mouse Events (Not valid in base, bdo, br, frame, frameset, head, html, iframe, meta,

param, script, style, title elements)

Attribute Value Description

Onclick script What to do on a mouse click

Ondblclick script What to do on a mouse double-click

Onmousedown script What to do when mouse button is pressed

Onmousemove script What to do when mouse pointer moves

Onmouseout Script What to do when mouse pointer moves out of an

element

Onmouseover Script What to do when mouse pointer moves over an

element

Onmouseup script What to do when mouse button is released

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

23

CSS (Cascading Style Sheets)

CSS stands for cascading style sheets. It was first developed in 1997, as a way for Web

developers to define the look and feel of their Web pages. It was intended to allow

developers to separate content from design and layout so that HTML could perform more

of the function without worry about the design and layout. It is used to separate style from

content.

Syntax
A CSS rule has two main parts: a selector and one or more declarations. Selector is

normally the HTML element you want to style and each declaration consists of a property

and value. The property is the style attribute we want to use and each property has a value

associated with it.

Example:

p {color:red;text-align:center;}

Inserting CSS
We can use style sheets in three different ways in out HTML document. There are external

style sheet, internal style sheet and inline style.

External Style Sheet
If we want to apply the same style to many pages, we use external style sheet. With an

external style sheet, you can change the look of an entire Web site by changing one style

sheet file. Each page must link to the style sheet using the <link> tag. The <link> tag goes

inside the head section. For example,

<head>
<link rel="stylesheet" type="text/css" href="mystyle.css" />
</head>

An external style sheet can be written in any text editor. The file should not contain any

html tags. Your style sheet should be saved with a .css extension. An example of a style

sheet file is shown below:

hr {color:sienna;}
p {margin-left:20px;} /*Note: Do not leave space between property value and units*/
body {background-image:url("images/back40.gif");}

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

24

Internal Style Sheet
If you want a unique style to a single document, an internal style sheet should be used. You

define internal styles in the head section of an HTML page, by using the <style> tag. For

example,

<head>
<style type="text/css">
hr {color:red;}
p {margin-left:20px;}
body {background-image:url("images/back40.gif");}
</style>
</head>

Inline Styles
If you want a unique style to a single element, an inline style sheet should be used. An

inline style loses many of the advantages of style sheets by mixing content with

presentation. To use inline styles you use the style attribute in the relevant tag. The style

attribute can contain any CSS property. For example,

<p style="color:yellow;margin-left:20px">This is a paragraph.</p>

Comments
Comments are used to explain your code, and may help you when you edit the source code

at a later date. Comments are ignored by browsers. A CSS comment begins with "/*", and

ends with "*/".

Id and Class Selectors
The id selector is used to specify a style for a single, unique element. The id selector uses

id attribute of the HTML element and is defined with “#”. For example,

<head>
<style type="text/css">
#para1
{
text-align:center;
color:red;
}
</style>
</head>
<body>
<p id="para1">Hello World!</p>
<p>This paragraph is not affected by the style.</p>
</body>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

25

The class selector is used to specify a style for a group of elements. Unlike the id selector,

the class selector is most often used on several elements. This allows you to set a particular

style for any HTML elements with the same class. The class selector uses the HTML class

attribute, and is defined with a ".". For example,

<head>
<style type="text/css">
.center
{
text-align:center;
}
</style>
</head>
<body>
<h1 class="center">Center-aligned heading</h1>
<p class="center">Center-aligned paragraph.</p>
</body>

You can also specify that only specific HTML elements should be affected by a class. For

example,

<head>
<style type="text/css">
p.center
{
text-align:center;
}
</style>
</head>
<body>
<h1 class="center">This heading will not be affected</h1>
<p class="center">This paragraph will be center-aligned.</p>
</body>

Multiple Styles Will Cascade into One

Styles can be specified:

 inside an HTML element

 inside the head section of an HTML page

 in an external CSS file

Tip: Even multiple external style sheets can be referenced inside a single HTML

document.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

26

Cascading order

What style will be used when there is more than one style specified for an HTML element?

Generally speaking we can say that all the styles will "cascade" into a new "virtual" style

sheet by the following rules, where number four has the highest priority:

1. Browser default

2. External style sheet

3. Internal style sheet (in the head section)

4. Inline style (inside an HTML element)

So, an inline style (inside an HTML element) has the highest priority, which means that it

will override a style defined inside the <head> tag, or in an external style sheet, or in a

browser (a default value).

Note: If the link to the external style sheet is placed after the internal style sheet in HTML

<head>, the external style sheet will override the internal style sheet!

CSS Background
Background properties are used to define the background effects of an HTML element.

CSS properties used to define background effects are: background-color, background-

image, background-repeat, background-attachment, and background-position.

Background Image

The background-image property specifies an image to use as the background of an

element. By default, the image is repeated so it covers the entire element.

The background image for a page can be set like this:

body {background-image:url('paper.gif');}

Background Image - Repeat Horizontally or Vertically

By default, the background-image property repeats an image both horizontally and

vertically. Some images should be repeated only horizontally or vertically, or they will

look strange, like this:

Example

body

{

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

27

background-image:url('gradient2.png');

}

If the image is repeated only horizontally (repeat-x), the background will look better:

Example

body

{

background-image:url('gradient2.png');

background-repeat:repeat-x;

}

Background Image - Set position and no-repeat

When using a background image, use an image that does not disturb the text. Showing the

image only once is specified by the background-repeat property:

Example

body

{

background-image:url('img_tree.png');

background-repeat:no-repeat;

}

In the example above, the background image is shown in the same place as the text. We

want to change the position of the image, so that it does not disturb the text too much.

The position of the image is specified by the background-position property:

Example

body

{

background-image:url('img_tree.png');

background-repeat:no-repeat;

background-position:right top;

}

Shorthand Property
To shorten the code, it is also possible to specify all the properties in one single property.

This is called a shorthand property. The shorthand property for background is simply

"background". When using the shorthand property the order of the property values are:

background-color, background-image, background-repeat, background-attachment, and

background-position. For example,

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

28

body {background:#ffffff url('img_tree.png') no-repeat right top;}

Grouping Selectors

In style sheets there are often elements with the same style.

h1

{

color:green;

}

h2

{

color:green;

}

p

{

color:green;

}

To minimize the code, you can group selectors. Separate each selector with a comma. In

the example below we have grouped the selectors from the code above:

Example

h1,h2,p

{

color:green;

}

CSS Display and Visibility

The display property specifies if/how an element is displayed, and the visibility property

specifies if an element should be visible or hidden.

Hiding an Element - display:none or visibility:hidden

Hiding an element can be done by setting the display property to "none" or the visibility

property to "hidden". However, notice that these two methods produce different results:

visibility: hidden hides an element, but it will still take up the same space as before. The

element will be hidden, but still affect the layout.

Example

h1.hidden {visibility:hidden;}

display: none hides an element, and it will not take up any space. The element will be

hidden, and the page will be displayed as the element is not there:

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

29

Example

h1.hidden {display:none;}

CSS Display - Block and Inline Elements

A block element is an element that takes up the full width available, and has a line break

before and after it.

Examples of block elements:

 <h1>

 <p>

 <div>

An inline element only takes up as much width as necessary, and does not force line

breaks.

Examples of inline elements:



 <a>

Changing How an Element is Displayed

Changing an inline element to a block element, or vice versa, can be useful for making the

page look a specific way, and still follow web standards.

The following example displays list items as inline elements:

Example

li {display:inline;}

The following example displays span elements as block elements:

Example

span {display:block;}

Changing the display type of an element changes only how the element is displayed, NOT

what kind of element it is. For example: An inline element set to display:block is not

allowed to have a block element nested inside of it.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

30

CSS Padding Property:

Example

Set the padding of a p element:

p

{

padding:2cm 4cm 3cm 4cm;

}

Definition and Usage

The padding shorthand property sets all the padding properties in one declaration. This

property can have from one to four values.

Examples:

 padding:10px 5px 15px 20px;

o top padding is 10px

o right padding is 5px

o bottom padding is 15px

o left padding is 20px

 padding:10px 5px 15px;

o top padding is 10px

o right and left padding are 5px

o bottom padding is 15px

 padding:10px 5px;

o top and bottom padding are 10px

o right and left padding are 5px

 padding:10px;

o all four paddings are 10px

Note: Negative values are not allowed.

CSS Float:

With CSS float, an element can be pushed to the left or right, allowing other elements to

wrap around it. Float is very often used for images, but it is also useful when working with

layouts.

How Elements Float

Elements are floated horizontally; this means that an element can only be floated left or

right, not up or down. A floated element will move as far to the left or right as it can.

Usually this means all the way to the left or right of the containing element. The elements

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

31

after the floating element will flow around it. The elements before the floating element will

not be affected. If an image is floated to the right, a following text flows around it, to the

left.

Example

img

{

float:right;

}

Floating Elements Next to Each Other

If you place several floating elements after each other, they will float next to each other if

there is room. Here we have made an image gallery using the float property:

Example

.thumbnail

{

float:left;

width:110px;

height:90px;

margin:5px;

}

Turning off Float - Using Clear

Elements after the floating element will flow around it. To avoid this, use the clear

property.

The clear property specifies which sides of an element other floating elements are not

allowed.

Add a text line into the image gallery, using the clear property:

Example

.text_line

{

clear:both;

}

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

32

JavaScript

 JavaScript was designed to add interactivity to HTML pages

 JavaScript is a scripting language

 A scripting language is a lightweight programming language

 JavaScript is usually embedded directly into HTML pages

 JavaScript is an interpreted language (means that scripts execute without

preliminary compilation)

 Everyone can use JavaScript without purchasing a license

Are Java and JavaScript the same?
NO! Java and JavaScript are two completely different languages in both concept and

design! Java (developed by Sun Microsystems) is a powerful and much more complex

programming language - in the same category as C and C++.

What can a JavaScript do?

 JavaScript gives HTML designers a programming tool - HTML authors are

normally not programmers, but JavaScript is a scripting language with a very

simple syntax! Almost anyone can put small "snippets" of code into their HTML

pages

 JavaScript can put dynamic text into an HTML page - A JavaScript statement

like this: document.write("<h1>" + name + "</h1>") can write a variable text into

an HTML page

 JavaScript can react to events - A JavaScript can be set to execute when

something happens, like when a page has finished loading or when a user clicks on

an HTML element

 JavaScript can read and write HTML elements - A JavaScript can read and

change the content of an HTML element

 JavaScript can be used to validate data - A JavaScript can be used to validate

form data before it is submitted to a server. This saves the server from extra

processing

 JavaScript can be used to detect the visitor's browser - A JavaScript can be used

to detect the visitor's browser, and - depending on the browser - load another page

specifically designed for that browser

 JavaScript can be used to create cookies - A JavaScript can be used to store and

retrieve information on the visitor's computer

The Real Name is ECMAScript

 JavaScript's official name is ECMAScript.

 ECMAScript is developed and maintained by the ECMA organization.

 ECMA-262 is the official JavaScript standard.

Downloaded from CSIT Tutor

http://www.ecma-international.org/

Web Technology Chapter- Introduction

Jagdish Bhatta

33

 The language was invented by Brendan Eich at Netscape (with Navigator 2.0), and

has appeared in all Netscape and Microsoft browsers since 1996.

 The development of ECMA-262 started in 1996, and the first edition of was

adopted by the ECMA General Assembly in June 1997.

 The standard was approved as an international ISO (ISO/IEC 16262) standard in

1998.

 The development of the standard is still in progress.

 The HTML <script> tag is used to insert a JavaScript into an HTML page.

The example below shows how to use JavaScript to write text on a web page:

<html>

<body>

<script type="text/javascript">

document.write("Hello World!");

</script>

</body>

</html>

The example below shows how to add HTML tags to the JavaScript:

<html>

<body>

<script type="text/javascript">

document.write("<h1>Hello World!</h1>");

</script>

</body>

</html>

To insert a JavaScript into an HTML page, we use the <script> tag. Inside the <script> tag

we use the type attribute to define the scripting language.

So, the <script type="text/javascript"> and </script> tells where the JavaScript starts and

ends:

<html>

<body>

<script type="text/javascript">

...

</script>

</body>

</html>

The document.write command is a standard JavaScript command for writing output to a

page.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

34

By entering the document.write command between the <script> and </script> tags, the

browser will recognize it as a JavaScript command and execute the code line. In this case

the browser will write Hello World! to the page:

<html>

<body>

<script type="text/javascript">

document.write("Hello World!");

</script>

</body>

</html>

Note: If we had not entered the <script> tag, the browser would have treated the

document.write("Hello World!") command as pure text, and just write the entire line on the

page.

How to Handle Simple Browsers
Browsers that do not support JavaScript, will display JavaScript as page content. To

prevent them from doing this, and as a part of the JavaScript standard, the HTML comment

tag should be used to "hide" the JavaScript.

Just add an HTML comment tag <!-- before the first JavaScript statement, and a --> (end

of comment) after the last JavaScript statement, like this:

<html>

<body>

<script type="text/javascript">

<!--

document.write("Hello World!");

//-->

</script>

</body>

</html>

The two forward slashes at the end of comment line (//) is the JavaScript comment symbol.

This prevents JavaScript from executing the --> tag.

JavaScripts can be put in the body and in the head sections of an HTML page.

Where to Put the JavaScript
JavaScripts in a page will be executed immediately while the page loads into the browser.

This is not always what we want. Sometimes we want to execute a script when a page

loads, or at a later event, such as when a user clicks a button. When this is the case we put

the script inside a function, you will learn about functions in a later chapter.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

35

Scripts in <head>
Scripts to be executed when they are called, or when an event is triggered, are placed in

functions. Put your functions in the head section, this way they are all in one place, and

they do not interfere with page content.

Example

<html>

<head>

<script type="text/javascript">

function message()

{

alert("This alert box was called with the onload event");

}

</script>

</head>

<body onload="message()">

</body>

</html>

Scripts in <body>
If you don't want your script to be placed inside a function, or if your script should write

page content, it should be placed in the body section.

Example

<html>

<head>

</head>

<body>

<script type="text/javascript">

document.write("This message is written by JavaScript");

</script>

</body>

</html>

Scripts in <head> and <body>
You can place an unlimited number of scripts in your document, so you can have scripts in

both the body and the head section.

Example

<html>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

36

<head>

<script type="text/javascript">

function message()

{

alert("This alert box was called with the onload event");

}

</script>

</head>

<body onload="message()">

<script type="text/javascript">

document.write("This message is written by JavaScript");

</script>

</body>

</html>

Using an External JavaScript
If you want to run the same JavaScript on several pages, without having to write the same

script on every page, you can write a JavaScript in an external file.

Save the external JavaScript file with a .js file extension.

Note: The external script cannot contain the <script></script> tags!

To use the external script, point to the .js file in the "src" attribute of the <script> tag:

<html>

<head>

<script type="text/javascript" src="xxx.js"></script>

</head>

<body>

</body>

</html>

Note: Remember to place the script exactly where you normally would write the script!

JavaScript is a sequence of statements to be executed by the browser.

JavaScript is Case Sensitive
Unlike HTML, JavaScript is case sensitive - therefore watch your capitalization closely

when you write JavaScript statements, create or call variables, objects and functions.

JavaScript Statements
A JavaScript statement is a command to a browser. The purpose of the command is to tell

the browser what to do.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

37

This JavaScript statement tells the browser to write "Hello Dolly" to the web page:

 document.write("Hello Dolly");

It is normal to add a semicolon at the end of each executable statement. Most people think

this is a good programming practice, and most often you will see this in JavaScript

examples on the web.

The semicolon is optional (according to the JavaScript standard), and the browser is

supposed to interpret the end of the line as the end of the statement. Because of this you

will often see examples without the semicolon at the end.

Note: Using semicolons makes it possible to write multiple statements on one line.

JavaScript Code
JavaScript code (or just JavaScript) is a sequence of JavaScript statements. Each statement

is executed by the browser in the sequence they are written. Following example will write

a heading and two paragraphs to a web page:

Example

<script type="text/javascript">

document.write("<h1>This is a heading</h1>");

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph.</p>");

</script>

JavaScript Blocks
JavaScript statements can be grouped together in blocks. Blocks start with a left curly

bracket {, and ends with a right curly bracket }. The purpose of a block is to make the

sequence of statements execute together. Following example will write a heading and two

paragraphs to a web page:

Example

<script type="text/javascript">

{

document.write("<h1>This is a heading</h1>");

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph tested at pmc.</p>");

}

</script>

The example above is not very useful. It just demonstrates the use of a block. Normally a

block is used to group statements together in a function or in a condition (where a group of

statements should be executed if a condition is met).

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

38

JavaScript Variables
As with algebra, JavaScript variables are used to hold values or expressions. A variable can

have a short name, like x, or a more descriptive name, like carname.

Rules for JavaScript variable names:

 Variable names are case sensitive (y and Y are two different variables)

 Variable names must begin with a letter or the underscore character

Note: Because JavaScript is case-sensitive, variable names are case-sensitive.

Declaring (Creating) JavaScript Variables
Creating variables in JavaScript is most often referred to as "declaring" variables. You can

declare JavaScript variables with the var statement:

var x;

var carname;

After the declaration shown above, the variables are empty (they have no values yet).

However, you can also assign values to the variables when you declare them:

var x=5;

var carname="Volvo";

After the execution of the statements above, the variable x will hold the value 5, and

carname will hold the value Volvo.

Note: When you assign a text value to a variable, use quotes around the value.

Assigning Values to Undeclared JavaScript Variables
If you assign values to variables that have not yet been declared, the variables will

automatically be declared.

These statements:

x=5;

carname="Volvo";

have the same effect as:

var x=5;

var carname="Volvo";

Redeclaring JavaScript Variables
If you redeclare a JavaScript variable, it will not lose its original value.

var x=5;

var x;

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

39

After the execution of the statements above, the variable x will still have the value of 5.

The value of x is not reset (or cleared) when you redeclare it.

JavaScript Arithmetic
As with algebra, you can do arithmetic operations with JavaScript variables:

y=x-5;

z=y+5;

Comparison Operators
Comparison operators are used in logical statements to determine equality or difference

between variables or values.

Given that x=5, the table below explains the comparison operators:

Operator Description Example

 = = is equal to x==8 is false

 = = = is exactly equal to (value and type) x===5 is true

x==="5" is false

!= is not equal x!=8 is true

> is greater than x>8 is false

< is less than x<8 is true

>= is greater than or equal to x>=8 is false

<= is less than or equal to x<=8 is true

Logical Operators
Logical operators are used to determine the logic between variables or values. Given that

x=6 and y=3, the table below explains the logical operators:

Operator Description Example

&& And (x < 10 && y > 1) is true

|| Or (x==5 || y==5) is false

! Not !(x==y) is true

Conditional Operator
JavaScript also contains a conditional operator that assigns a value to a variable based on

some condition.

Syntax

variablename=(condition)?value1:value2

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

40

Example

greeting=(visitor=="PRES")?"Dear President ":"Dear ";

If the variable visitor has the value of "PRES", then the variable greeting will be assigned

the value "Dear President " else it will be assigned "Dear".

Flow Control

• Conditional statements are used to perform different actions based on different

conditions.

• In JavaScript we have the following conditional statements:

• if statement - use this statement to execute some code only if a specified condition

is true

• if...else statement - use this statement to execute some code if the condition is true

and another code if the condition is false

• if...else if....else statement - use this statement to select one of many blocks of code

to be executed

• switch statement - use this statement to select one of many blocks of code to be

executed

Looping Structures

• Often when you write code, you want the same block of code to run over and over

again in a row. Instead of adding several almost equal lines in a script we can use

loops to perform a task like this.

• In JavaScript, there are two different kind of loops:

• for - loops through a block of code a specified number of times

• while - loops through a block of code while a specified condition is true

The for Loop

• The for loop is used when you know in advance how many times the script should

run.

Syntax

for (var=startvalue;var<=endvalue;var=var+increment)

{

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

41

code to be executed

}

Example

<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=5;i++)

{

document.write("The number is " + i);

document.write("
");

}

</script>

</body>

</html>

JavaScript While Loop

• The while loop loops through a block of code while a specified condition is true.

Syntax

• while (var<=endvalue)

 {

 code to be executed

 }

Example

<html>

<body>

<script type="text/javascript">

var i=0;

while (i<=5)

 {

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

42

 document.write("The number is " + i);

 document.write("
");

 i++;

 }

</script>

</body>

</html>

Javascript do while loop

The do...while loop is a variant of the while loop. This loop will execute the block of

code ONCE, and then it will repeat the loop as long as the specified condition is true.

Syntax

do

 {

 code to be executed

 }

while (var<=endvalue);

Example

The example below uses a do...while loop. The do...while loop will always be executed

at least once, even if the condition is false, because the statements are executed before

the condition is tested:

<html>

<body>

<script type="text/javascript">

var i=0;

do

 {

 document.write("The number is " + i);

 document.write("
");

 i++;

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

43

 }

while (i<=5);

</script>

</body>

</html>

The Break Statement

The break statement will break the loop and continue executing the code that follows after

the loop (if any).

<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=10;i++)

 {

 if (i==3)

 {

 break;

 }

 document.write("The number is " + i);

 document.write("
");

 }

</script>

</body>

</html>

Javascript for ….. in statement

The for...in statement loops through the elements of an array or through the properties of

an object.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

44

Syntax

for (variable in object)

 {

 code to be executed

 }

Note: The code in the body of the for...in loop is executed once for each element/property.

Example: Use the for...in statement to loop through an array:

<html>

<body>

<script type="text/javascript">

var x;

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

for (x in mycars)

 {

 document.write(mycars[x] + "
");

 }

</script>

</body>

</html>

Functions

• A function is simply a block of code with a name, which allows the block of code

to be called by other components in the scripts to perform certain tasks.

• Functions can also accept parameters that they use complete their task.

• JavaScript actually comes with a number of built-in functions to accomplish a

variety of tasks.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

45

Creating Custom Functions

• In addition to using the functions provided by javaScript, you can also create and

use your own functions.

• General syntax for creating a function in JavaScript is as follows:

function name_of_function(argument1,argument2,…arguments)

{

…………………………………………

//Block of Code

…………………………………………

}

Calling functions

• There are two common ways to call a function: From an event handler and from

another function.

• Calling a function is simple. You have to specify its name followed by the pair of

parenthesis.

 <SCRIPT TYPE="TEXT/JAVASCRIPT">

 name_of_function(argument1,argument2,…arguments)

 </SCRIPT>

Example

<html>

<head> <title>PMC</title>

<Script Language="JavaScript">

function welcomeMessage()

{

 document.write("Welcome to Patan Campus!");

}

 </Script>

</head>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

46

 <body>

<h1>Patan Multiple Campus CSIT</h1>

 <h3>Testing the function in PMC</h3>

<Script Language="JavaScript">

welcomeMessage();

</Script>

 </body>

</html>

Popup Boxes

Alert Box:

An alert box is often used if you want to make sure information comes through to the user.

When an alert box pops up, the user will have to click "OK" to proceed.

Syntax

alert("sometext");

Example

<html>

<head>

<script type="text/javascript">

function show_alert()

{

alert("I am an alert box!");

}

</script>

</head>

<body>

<input type="button" onclick="show_alert()" value="Show alert box" />

</body>

</html>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

47

Confirmation Box:

A confirm box is often used if you want the user to verify or accept something. When a

confirm box pops up, the user will have to click either "OK" or "Cancel" to proceed. If the

user clicks "OK", the box returns true. If the user clicks "Cancel", the box returns false.

Syntax

confirm("sometext");

Example

<html>

<head>

<script type="text/javascript">

function show_confirm()

{

var r=confirm("Press a button");

if (r==true)

 {

 document.write("You pressed OK!");

 }

else

 {

 document.write("You pressed Cancel!");

 }

}

</script>

</head>

<body>

<input type="button" onclick="show_confirm()" value="Show confirm box" />

</body>

</html>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

48

Prompt Box:

A prompt box is often used if you want the user to input a value before entering a page.

When a prompt box pops up, the user will have to click either "OK" or "Cancel" to proceed

after entering an input value. If the user clicks "OK" the box returns the input value. If the

user clicks "Cancel" the box returns null.

Syntax

prompt("sometext","defaultvalue");

Example

<html>

<head>

<script type="text/javascript">

var name=prompt("Please enter your name",“Rajendra");

</script>

</head>

<body>

<script type="text/javascript">

document.write("Hello "+name + "You have worked will with variables");

</script>

</body>

</html>

JavaScript objects

JavaScript is an Object Oriented Programming (OOP) language. An OOP language allows

you to define your own objects and make your own variable types. An object is just a

special kind of data. An object has properties and methods.

Properties: Properties are the values associated with an object.

Methods: Methods are the actions that can be performed on objects.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

49

Array Object in JavaScript

An array is a special variable, which can hold more than one value, at a time. An array can

hold all your variable values under a single name. And you can access the values by

referring to the array name. Each element in the array has its own ID so that it can be easily

accessed. The following code creates an Array object called myCars:

var myCars=new Array();

There are three ways of adding values to an array (you can add as many values as you need

to define as many variables you require).

1.) Conventional array: The classic conventional array looks like the following:

var myCars=new Array();

myCars[0]="Saab";

myCars[1]="Volvo";

myCars[2]="BMW";

You can expand and contract the array as desired, by adding new array elements. Note that

like in most other programming languages, the first array element should have an index

number of 0.

With a conventional array, you have the option of presetting the array's length when

defining it, by passing in a numeric integer into the Array() constructor:

var myCars=new Array(3);

myCars[0]="Saab";

myCars[1]="Volvo";

myCars[2]="BMW";

2.) Condensed array: The second way of defining an array is called a condensed array,

and differs from the above simply in that it allows you to combine the array and

array elements definitions into one step:

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

50

var myCars=new Array("Saab","Volvo","BMW");

This is convinient if you know all the array element values in advance.

3.) Literal array: Finally, we arrive at literal arrays. Introduced in JavaScript1.2

and support by all modern browsers (IE/NS4+), literal arrays sacrafice

intuitiveness somewhat in exchange for tremendous robustness. The syntax looks

like:

var myCars=["Saab","Volvo","BMW"];

Literal array with 5 elements (middle 3 with undefined values).

 var mystudents=["giri", , , "tulsi"]

As you can see, enclose all the array elements within an outter square bracket ([]), each

separated by a comma (,). To create array elements with an initial undefined value just

enter a comma (,) as shown in the second example above.

Literal arrays really shine when it comes to defining multi-dimensional arrays. It is as easy

as adding containing brackets ([]) within the outermost bracket. For example:

var myarray=[["Subash", "Pandey", "Gautam"], Kalanki, Sanepa]

Here the first array element is actually a two dimensional array in itself containing various

cities names. To access LA, then, you'd use the syntax:

myarray[0][1] //returns "Pandey"

Note: If you specify numbers or true/false values inside the array then the type of variables

will be numeric or Boolean instead of string.

Accessing the Array

You can refer to a particular element in an array by referring to the name of the array and

the index number. The index number starts at 0. In above initialized array, the code line

document.write(myCars[0]); will result in the following output: Saab

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

51

To modify a value in an existing array, just add a new value to the array with a specified

index number:

myCars[0]="Opel";

Now, the following code line:

document.write(myCars[0]); will result in the following output: Opel.

Some methods associated with array

• concat(): Joins two or more arrays, and returns a copy of the joined arrays

• join(): Joins all elements of an array into a string

• pop(): Removes the last element of an array, and returns that element

• push(): Adds new elements to the end of an array, and returns the new length

• reverse(): Reverses the order of the elements in an array

• shift(): Removes the first element of an array, and returns that element

• sort(): Sorts the elements of an array

• toString(): Converts an array to a string, and returns the result

• unshift(): Adds new elements to the beginning of an array, and returns the new

length

Example

Concat() : Joining Two Arrays

<script type="text/javascript">

var parents = ["Giri", "Pari"];

var children = ["Cactus", "Rose"];

var family = parents.concat(children);

document.write(family);

</script>

The output will be :

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

52

Giri, Pari, Cactus, Rose

String Object in JavaScript

The String object is used to manipulate a stored piece of text. String objects are created

with new String().

Syntax

var txt = new String(string);or more simply:

var txt = string;

Some methods associated with String object:

 toLowerCase(): Converts a string to lowercase letters

 toUpperCase(): Converts a string to uppercase letters

 concat(): Joins two or more strings, and returns a copy of the joined strings

 charAt(): Returns the character at the specified index

 indexOf(): Returns the position of the first found occurrence of a specified value

in a string

 replace(): Searches for a match between a substring (or regular expression) and a

string, and replaces the matched substring with a new substring

Examples

In the following example we are using the length property of the String object to return the

number of characters in a string:

<script type="text/javascript">

var txt="Hello World!";

document.write(txt.length);

</script>

The output of the code above will be: 12

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

53

In the following example we are using the toUpperCase() method of the String object to

display a text in uppercase letters:

<script type="text/javascript">

var str="hello its me webtech!";

document.write(str.toUpperCase());

</script>

The output of the code above will be:

HELLO ITS ME WEBTECH

Example: IndexOf () method

The indexOf() method returns the position of the first occurrence of a specified value in a

string. This method returns -1 if the value to search for never occurs. The indexOf()

method is case sensitive.

Syntax

string.indexOf(searchstring, start)

searchstring: Required. The string to search for.

start: Optional. The start position in the string to start the search. If omitted, the search

starts from position 0

<script type="text/javascript">

var str="Patan world!";

document.write(str.indexOf("d") + "
");

document.write(str.indexOf("WORLD") + "
");

document.write(str.indexOf("world"));

</script>

Output

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

54

10

-1

6

Math Object in Javascript

The Math object allows you to perform mathematical tasks. The Math object includes

several mathematical constants and methods. For example

var pi_value=Math.PI;

var sqrt_value=Math.sqrt(16);

Note: Math is not a constructor. All properties and methods of Math can be called by using

Math as an object without creating it.

Properties

• Math.E: Returns Euler's number (approx. 2.718)

• Math.LN2: Returns the natural logarithm of 2 (approx. 0.693)

• Math.LN10: Returns the natural logarithm of 10 (approx. 2.302)

• Math.LOG2E: Returns the base-2 logarithm of E (approx. 1.442)

• Math.LOG10E: Returns the base-10 logarithm of E (approx. 0.434)

• Math.PI: Returns PI (approx. 3.14159)

• Math.SQRT1_2: Returns the square root of 1/2 (approx. 0.707)

• Math.SQRT2: Returns the square root of 2 (approx. 1.414)

Methods

• abs(x): Returns the absolute value of x

• ceil(x): Returns x, rounded upwards to the nearest integer

• floor(x): Returns x, rounded downwards to the nearest integer

• log(x): Returns the natural logarithm (base E) of x

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

55

• max(x,y,z,...,n): Returns the number with the highest value

• min(x,y,z,...,n): Returns the number with the lowest value

• pow(x,y): Returns the value of x to the power of y

• sqrt(x): Returns the square root of x

• random(): Returns a random number between 0 and 1

• round(x): Rounds x to the nearest integer

• sin(x): Returns the sine of x (x is in radians)

• cos(x): Returns the cosine of x (x is in radians)

• tan(x): Returns the tangent of an angle

Examples

document.write(Math.round(4.7));

Output: 5

document.write(Math.random());

Output: 0.19733826867061233

document.write(Math.floor(Math.random()*6));

Output: 3

Date Object in Javascript

The Date object is used to work with dates and times. Date objects are created with the

Date() constructor. We can easily manipulate the date by using the methods available for

the Date object. In the example below we set a Date object to a specific date (14th January

2010):

var myDate=new Date();

myDate.setFullYear(2010,0,14);

And in the following example we set a Date object to be 5 days into the future:

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

56

var myDate=new Date();

myDate.setDate(myDate.getDate()+5);

Note: If adding five days to a date shifts the month or year, the changes are handled

automatically by the Date object itself!

Methods

 getDate() Returns the day of the month (from 1-31)

 getDay() Returns the day of the week (from 0-6)

 getFullYear() Returns the year (four digits)

 getHours() Returns the hour (from 0-23)

 getMilliseconds() Returns the milliseconds (from 0-999)

 getMinutes() Returns the minutes (from 0-59)

 getMonth() Returns the month (from 0-11)

 getSeconds() Returns the seconds (from 0-59)

 setDate() Sets the day of the month (from 1-31)

 setFullYear() Sets the year (four digits)

 setHours() Sets the hour (from 0-23)

 setMilliseconds() Sets the milliseconds (from 0-999)

 setMinutes() Set the minutes (from 0-59)

 setMonth() Sets the month (from 0-11)

 setSeconds() Sets the seconds (from 0-59)

 toString() Converts a Date object to a string

Examples

The Date object is also used to compare two dates. The following example compares

today's date with the 14th January 2010:

var myDate=new Date();

myDate.setFullYear(2010,0,14);

Downloaded from CSIT Tutor

http://www.w3schools.com/jsref/jsref_getday.asp
http://www.w3schools.com/jsref/jsref_gethours.asp
http://www.w3schools.com/jsref/jsref_setdate.asp
http://www.w3schools.com/jsref/jsref_setdate.asp
http://www.w3schools.com/jsref/jsref_getminutes.asp
http://www.w3schools.com/jsref/jsref_setmilliseconds.asp
http://www.w3schools.com/jsref/jsref_setseconds.asp
http://www.w3schools.com/jsref/jsref_gethours.asp
http://www.w3schools.com/jsref/jsref_getmonth.asp
http://www.w3schools.com/jsref/jsref_setmonth.asp
http://www.w3schools.com/jsref/jsref_tostring_date.asp
http://www.w3schools.com/jsref/jsref_tostring_date.asp
http://www.w3schools.com/jsref/jsref_setminutes.asp
http://www.w3schools.com/jsref/jsref_setseconds.asp
http://www.w3schools.com/jsref/jsref_getdate.asp
http://www.w3schools.com/jsref/jsref_getmonth.asp
http://www.w3schools.com/jsref/jsref_setfullyear.asp
http://www.w3schools.com/jsref/jsref_getday.asp
http://www.w3schools.com/jsref/jsref_getseconds.asp
http://www.w3schools.com/jsref/jsref_getdate.asp
http://www.w3schools.com/jsref/jsref_sethours.asp
http://www.w3schools.com/jsref/jsref_setmonth.asp
http://www.w3schools.com/jsref/jsref_getfullyear.asp
http://www.w3schools.com/jsref/jsref_getminutes.asp
http://www.w3schools.com/jsref/jsref_setmilliseconds.asp
http://www.w3schools.com/jsref/jsref_getmilliseconds.asp
http://www.w3schools.com/jsref/jsref_getseconds.asp
http://www.w3schools.com/jsref/jsref_sethours.asp
http://www.w3schools.com/jsref/jsref_setminutes.asp
http://www.w3schools.com/jsref/jsref_setfullyear.asp
http://www.w3schools.com/jsref/jsref_getfullyear.asp
http://www.w3schools.com/jsref/jsref_getmilliseconds.asp

Web Technology Chapter- Introduction

Jagdish Bhatta

57

var today = new Date();

if (myDate>today)

 {

 alert("Today is before 15th December 2011");

 }

else

 {

 alert("Today is after 15th January 2011");

 }

Examples

<html>

<head>

<script type="text/javascript">

function displayDate()

{

document.getElementById("demo").innerHTML=Date();

}

</script>

</head>

<body>

<h1>My First Web Page</h1>

<p id="demo">This is a paragraph.</p>

<button type="button" onclick="displayDate()">Display Date</button>

</body>

</html>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

58

<html>

<body>

<script type="text/javascript">

var d=new Date();

document.write(d);

</script>

</body>

</html>

Example: Displaying the clock

<html>

<head>

<script type="text/javascript">

function startTime()

{

var today=new Date();

var h=today.getHours();

var m=today.getMinutes();

var s=today.getSeconds();

// add a zero in front of numbers<10

//m=checkTime(m);

//s=checkTime(s);

document.getElementById('txt').innerHTML=h+":"+m+":"+s;

t=setTimeout('startTime()',1000);

}

//to concat 0 if i is not double digit

/*function checkTime(i)

{

if (i<10)

 {

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

59

 i="0" + i;

 }

return i;

} */

</script>

</head>

<body onload="startTime()">

<div id="txt"></div>

</body>

</html>

With JavaScript, it is possible to execute some code after a specified time-interval. This is

called timing events It's very easy to time events in JavaScript. The two key methods that

are used are:

 setTimeout() - executes a code some time in the future

 clearTimeout() - cancels the setTimeout()

Note: The setTimeout() and clearTimeout() are both methods of the HTML DOM Window

object.

The setTimeout() method returns a value. In the syntax defined above, the value is stored in

a variable called t. If you want to cancel the setTimeout() function, you can refer to it using

the variable name. The first parameter of setTimeout() can be a string of executable code,

or a call to a function. The second parameter indicates how many milliseconds from now

you want to execute the first parameter.

Note: There are 1000 milliseconds in one second.

In above example the function startTime() get executed after each second, showing the

content of div tag getting refreshed each time so as to display the clock.

User defined objects in JavaScript:

We have seen that JavaScript has several built-in objects, like String, Date, Array, and

more. In addition to these built-in objects, you can also create your own.

An object is just a special kind of data, with a collection of properties and methods.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

60

Let's illustrate with an example: A person is an object. Properties are the values associated

with the object. The persons' properties include name, height, weight, age, skin tone, eye

color, etc. All persons have these properties, but the values of those properties will differ

from person to person. Objects also have methods. Methods are the actions that can be

performed on objects. The persons' methods could be eat(), sleep(), work(), play(), etc.

The syntax for accessing a property of an object is:

objName.propName

You can call a method with the following syntax:

objName.methodName()

Note: Parameters required for the method can be passed between the parentheses.

There are different ways to create a new object:

1. Create a direct instance of an object

The following code creates an new instance of an object, and adds four properties to it:

personObj=new Object();

personObj.firstname="Jyoti";

personObj.lastname="Joshi";

personObj.age=25;

personObj.eyecolor="black";

alternative syntax (using object literals):

personObj={firstname:"Jyoti", lastname:"Joshi", age:25, eyecolor:"black"};

Adding a method to the personObj is also simple. The following code adds a method called

eat() to the personObj:

personObj.eat=eat;

function eat()

{

// code for the function

}

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

61

2. Create an object constructor

Create a function that constructs objects:

function person(firstname,lastname,age,eyecolor)

{

this.firstname=firstname;

this.lastname=lastname;

this.age=age;

this.eyecolor=eyecolor;

}

Inside the function you need to assign things to this.propertyName. The reason for all the

"this" stuff is that you're going to have more than one person at a time (which person

you're dealing with must be clear). That's what "this" is: the instance of the object at hand.

Once you have the object constructor, you can create new instances of the object, like this:

var myFather=new person("Ramesh","Joshi",50,"black");

var myMother=new person("Gita","Joshi",48,"blue");

You can also add some methods to the person object. This is also done inside the function:

function person(firstname,lastname,age,eyecolor)

{

this.firstname=firstname;

this.lastname=lastname;

this.age=age;

this.eyecolor=eyecolor;

this.newlastname=newlastname;

}

Note that methods are just functions attached to objects. Then we will have to write the

newlastname() function:

function newlastname(new_lastname)

{

this.lastname=new_lastname;

}

The newlastname() function defines the person's new last name and assigns that to the

person. JavaScript knows which person you're talking about by using "this." . So, now you

can write: myMother.newlastname("Joshi").

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

62

Example: Creating a circle object

<html>

<head>

<script type="text/javascript">

// mycircle object defined

function mycircle(r) {

 this.radius = r;

 this.retArea = getTheArea;

}

function getTheArea()

{

 return (Math.PI * this.radius * this.radius);

}

function createcircle ()

{

//create a mycircle called testcircle wtih radius 10

var testcircle = new mycircle(10);

window.alert('The area of the circle is ' + testcircle.retArea);

}

</script>

</head>

<body onLoad="createcircle()"> </body>

</html>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

63

HTML Document Object Model

The Document Object Model is a platform- and language-neutral interface that will allow

programs and scripts to dynamically access and update the content, structure and style of

documents. The document can be further processed and the results of that processing can

be incorporated back into the presented page. DOM provides a language-independent,

object-based model for accessing / modifying and adding to these tags.

The HTML DOM defines a standard set of objects for HTML, and a standard way to

access and manipulate HTML documents. All HTML elements, along with their

containing text and attributes, can be accessed through the DOM. The contents can be

modified or deleted, and new elements can be created. The HTML DOM is platform and

language independent. It can be used by any programming language like Java, JavaScript,

and VBScript.

When an HTML page is rendered in a browser, the browser assembles all the elements

(objects) that are contained in the HTML page, downloaded from web-server in its

memory. Once done the browser then renders these objects in the browser window as text,

forms, input boxes, etc. Once the HTML page is rendered in web-browser window, the

browser can no longer recognize individual HTML elements (Objects).

Since the JavaScript enabled browser uses the Document Object Model (DOM), after the

page has been rendered, JavaScript enabled browsers are capable of recognizing individual

objects in an HTML page.

The HTML objects, which belong to the DOM, have a descending relationship with each

other.

The topmost object in the DOM is the Navigator (i.e. Browser) itself. The next level in the

DOM is the browser's Window, and under that are the Documents displayed in Browser's

Window.

DOM

 |-> Window

 |-> Document

 |-> Anchor

 |-> Link

 |-> Form

 |-> Text-box

 |-> Text Area

 |-> Radio Button

 |-> Check Box

 |-> Select

 |-> Button

 ……….

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

64

Fig: HTML DOM Tree Example

The Form Object:

The Form object represents an HTML form. For each <form> tag in an HTML document,

a Form object is created. Forms are used to collect user input, and contain input elements

like text fields, checkboxes, radio-buttons, submit buttons and more. A form can also

contain select menus, textarea, fieldset, legend, and label elements. Forms are used to pass

data to a server.

Form Object Collections

Collection Description

elements[] Returns an array of all elements in a form

Form Object Properties

Property Description

acceptCharset Sets or returns the value of the accept-charset attribute in a form

action Sets or returns the value of the action attribute in a form

enctype Sets or returns the value of the enctype attribute in a form

length Returns the number of elements in a form

method Sets or returns the value of the method attribute in a form

name Sets or returns the value of the name attribute in a form

target Sets or returns the value of the target attribute in a form

Downloaded from CSIT Tutor

http://www.w3schools.com/jsref/prop_form_name.asp
http://www.w3schools.com/jsref/prop_form_method.asp
http://www.w3schools.com/jsref/prop_form_acceptcharset.asp
http://www.w3schools.com/jsref/coll_form_elements.asp
http://www.w3schools.com/jsref/prop_form_action.asp
http://www.w3schools.com/jsref/prop_form_enctype.asp
http://www.w3schools.com/jsref/prop_form_target.asp
http://www.w3schools.com/jsref/prop_form_length.asp

Web Technology Chapter- Introduction

Jagdish Bhatta

65

Form Object Methods

Method Description

reset() Resets a form

submit() Submits a form

Form Object Events

Event The event occurs when...

onreset The reset button is clicked

onsubmit The submit button is clicked

Form Method Property

The method property sets or returns the value of the method attribute in a form. The

method attribute specifies how to send form-data (the form-data is sent to the page

specified in the action attribute).

formObject.method=value

The method property can have one of the following values:

Value Description

get
Appends the form-data to the URL: URL?name=value&name=value (this is

default)

post Sends the form-data as an HTTP post transaction

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

66

RegExp Object:

A regular expression is an object that describes a pattern of characters. When you search in

a text, you can use a pattern to describe what you are searching for. A simple pattern can

be one single character. A more complicated pattern can consist of more characters, and

can be used for parsing, format checking, substitution and more.

Regular expressions are used to perform powerful pattern-matching and "search-and-

replace" functions on text.

Syntax

var patt=new RegExp(pattern,modifiers);

or more simply:

var patt=/pattern/modifiers;

 pattern specifies the pattern of an expression

 modifiers specify if a search should be global, case-sensitive, etc.

Modifiers: Modifiers are used to perform case-insensitive and global searches. The i

modifier is used to perform case-insensitive matching. The g modifier is used to perform a

global match (find all matches rather than stopping after the first match).

For example:

<html>

<body>

<script type="text/javascript">

var str = "Visit W3Schools";

var patt1 = /w3schools/i;

document.write(str.match(patt1));

</script>

</body>

</html>

The output: W3Schools

<html>

<body>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

67

<script type="text/javascript">

var str="Is this all there is?";

var patt1=/is/g;

document.write(str.match(patt1));

</script>

</body>

</html>

The output : is, is

<html>

<body>

<script type="text/javascript">

var str="Is this all there is?";

var patt1=/is/gi;

document.write(str.match(patt1));

</script>

</body>

</html>

The output : Is,is,is

test()

The test() method searches a string for a specified value, and returns true or false,

depending on the result. The following example searches a string for the character "e":

<html>

<body>

<script type="text/javascript">

var patt1=new RegExp("e");

document.write(patt1.test("The best things in life are free"));

</script>

</body>

</html>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

68

exec()

The exec() method searches a string for a specified value, and returns the text of the found

value. If no match is found, it returns null. The following example searches a string for the

character "e":

<html>

<body>

<script type="text/javascript">

var patt1=new RegExp("e");

document.write(patt1.exec("The best things in life are free"));

</script>

</body>

</html>

A caret (^) at the beginning of a regular expression indicates that the string being searched

must start with this pattern.

 The pattern ^foo can be found in "food", but not in "barfood".

A dollar sign ($) at the end of a regular expression indicates that the string being searched

must end with this pattern.

 The pattern foo$ can be found in "curfoo", but not in "food"

Number of Occurrences (? + * {})

The following symbols affect the number of occurrences of the preceding character: ?, +,

*, and {}.

 A questionmark (?) indicates that the preceding character should appear zero or one times

in the pattern.

 The pattern foo? can be found in "food" and "fod", but not "faod".

A plus sign (+) indicates that the preceding character should appear one or more times in

the pattern.

 The pattern fo+ can be found in "fod", "food" and "foood", but not "fd".

A asterisk (*) indicates that the preceding character should appear zero or more times in

the pattern.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

69

 The pattern fo*d can be found in "fd", "fod" and "food".

Curly brackets with one parameter ({n}) indicate that the preceding character should

appear exactly n times in the pattern.

 The pattern fo{3}d can be found in "foood" , but not "food" or "fooood".

Curly brackets with two parameters ({n1,n2}) indicate that the preceding character should

appear between n1 and n2 times in the pattern.

 The pattern fo{2,4}d can be found in "food","foood" and "fooood", but not "fod" or

"foooood".

Curly brackets with one parameter and an empty second paramenter ({n,}) indicate that

the preceding character should appear at least n times in the pattern.

 The pattern fo{2,}d can be found in "food" and "foooood", but not "fod".

Common Characters (. \d \D \w \W \s \S)

A period (.) represents any character except a newline.

 The pattern fo.d can be found in "food", "foad", "fo9d", and "fo*d".

Backslash-d (\d) represents any digit. It is the equivalent of [0-9].

 The pattern fo\dd can be found in "fo1d", "fo4d" and "fo0d", but not in "food" or

"fodd".

Backslash-D (\D) represents any character except a digit. It is the equivalent of [^0-9].

 The pattern fo\Dd can be found in "food" and "foad", but not in "fo4d".

Backslash-w (\w) represents any word character (letters, digits, and the underscore (_)).

 The pattern fo\wd can be found in "food", "fo_d" and "fo4d", but not in "fo*d".

Backslash-W (\W) represents any character except a word character.

 The pattern fo\Wd can be found in "fo*d", "fo@d" and "fo.d", but not in "food".

Backslash-s (\s) represents any whitespace character (e.g, space, tab, newline, etc.).

 The pattern fo\sd can be found in "fo d", but not in "food".

Backslash-S (\S) represents any character except a whitespace character.

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

70

 The pattern fo\Sd can be found in "fo*d", "food" and "fo4d", but not in "fo d".

Form Validation:

Form validation is the process of checking that a form has been filled in correctly before it

is processed. For example, if your form has a box for the user to type their email address,

you might want your form handler to check that they've filled in their address before you

deal with the rest of the form.

There are two main methods for validating forms: server-side (using CGI scripts, ASP,

etc), and client-side (usually done using JavaScript). Server-side validation is more secure

but often more tricky to code and it also increases load of server computer, whereas client-

side (JavaScript) validation is easier to do and quicker too (the browser doesn't have to

connect to the server to validate the form, so the user finds out instantly if they've missed

out that required field!) and it also decreases the load of server computer and hence server

computer can focus on business logic processing.

Form Validation - Checking for Non-Empty

This has to be the most common type of form validation. You want to be sure that your

visitors enter data into the HTML fields you have "required" for a valid submission. Below

is the JavaScript code to perform this basic check to see if a given HTML input is empty or

not.

<script type='text/javascript'>

function notEmpty()

{

 var v= document.getElementById('elem').value;

 if(v.length == 0)

 {

 alert("Field should not be empty:");

 document.getElementById('elem').value=” ”;

 document.getElementById('elem').focus();

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

71

 }

}

</script>

<form>

Required Field: <input type='text' id='elem'/>

<input type='button' onclick="notEmpty()" value='Check'/>

</form>

Form Validation - Checking for All Numbers

If someone is entering a credit card, phone number, zip code, similar information you want

to be able to ensure that the input is all numbers. The quickest way to check if an input's

string value is all numbers is to use a regular expression /^[0-9]+$/ that will only match if

the string is all numbers and is at least one character long.

<script type='text/javascript'>

function validate()

{

 var patt=/^[0-9]+$/;

 var v= document.getElementById('elem').value;

 if(v.match(patt))

 {

 alert("valid entry");

 }

 else

 {

 alert("Invalid entry:");

 document.getElementById('elem').value="";

 document.getElementById('elem').focus();

 }

}

</script>

<form>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

72

Required Field: <input type='text' id='elem'/>

<input type='button' onclick="validate()" value='Check'/>

</form>

Form Validation - Checking for All Letters

If we wanted to see if a string contained only letters we need to specify an expression that

allows for both lowercase and uppercase letters: /^[a-zA-Z]+$/ .

<script type='text/javascript'>

function validate()

{

 var patt=/^[a-zA-Z]+$/;

 var v= document.getElementById('elem').value;

 if(v.match(patt))

 {

 alert("valid entry");

 }

 else

 {

 alert("Invalid entry:");

 document.getElementById('elem').value="";

 document.getElementById('elem').focus();

 }

}

</script>

<form>

Required Field: <input type='text' id='elem'/>

<input type='button' onclick="validate()" value='Check'/>

</form>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

73

Form Validation - Restricting the Length

Being able to restrict the number of characters a user can enter into a field is one of the

best ways to prevent bad data. Below we have created a function that checks for length of

input.

<script type='text/javascript'>

function validate()

{

 var minlen=6;

 var v= document.getElementById('elem').value;

 if(v.length<6)

 {

 alert("User ID must have at least 6 Characters");

 document.getElementById('elem').value="";

 document.getElementById('elem').focus();

 }

 else

 {

 alert("Valid entry:");

 }

}

</script>

<form>

User ID: <input type='text' id='elem'/>

<input type='button' onclick="validate()" value='Check'/>

</form>

Form Validation - Selection Made

To be sure that someone has actually selected a choice from an HTML select input you can

use a simple trick of making the first option as helpful prompt to the user and a red flag to

you for your validation code. By making the first option of your select input something

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

74

like "Please Choose" you can spur the user to both make a selection and allow you to

check to see if the default option "Please Choose" is still selected when he/she submit the

form.

<script type='text/javascript'>

function validate()

{

 var si=document.getElementById('con').selectedIndex;

 var v= document.getElementById('con').options[si].text;

 if(v=="Please Choose")

 {

 alert("You must choose the country");

 }

 else

 {

 alert("Your Country is:"+v);

 }

}

</script>

<form>

Select Country: <select id='con'>

<option>Please Choose</option> <option>Nepal</option>

<option>India</option> <option>China</option>

</select>

<input type='button' onclick='validate()' value='Check'/>

</form>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

75

Validating radio buttons

Radio buttons are used if we want to choose any one out of many options such as gender.

In such case any one of the radio button must be selected. We can validate radio button

selection as below:

<script type='text/javascript'>

function validate()

{

 var sex=document.getElementsByName("gen");

 if(sex[0].checked==false && sex[1].checked==false)

 {

 alert("You must choose Gender");

 }

 else

 {

 if(sex[0].checked==true)

 alert("Male");

 else

 alert("Female");

 }

}

</script>

<form>

Select Gender:

<input type=radio name='gen'>Male

<input type=radio name='gen'>Female

<input type='button' onclick='validate()' value='Check'/>

</form>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

76

Form Validation - Email Validation

How to check to see if a user's email address is valid? Every email is made up for 5 parts:

1. A combination of letters, numbers, periods, hyphens, plus signs, and/or underscores

2. The at symbol @

3. A combination of letters, numbers, hyphens, and/or periods

4. A period

5. The top level domain (com, net, org, us, gov, ...)

Valid Examples:

 jagdish@ntc.net

 jagdish+bhatta@gmail.com

 jagdish-bhatta@patan.edu.np

Invalid Examples:

 @deleted.net - no characters before the @

 free!dom@bravehe.art - invalid character !

 shoes@need_shining.com - underscores are not allowed in the domain name

<script type='text/javascript'>

function validate()

{

 var patt=/^[\w\-\.\+]+\@[a-zA-Z0-9\.\-]+\.[a-zA-z0-9]{2,4}$/;

 var v= document.getElementById('elem').value;

 if(v.match(patt))

 {

 alert("valid Email");

 }

 else

 {

 alert("Invalid Email"); document.getElementById('elem').value="";

 document.getElementById('elem').focus();

 }

}

</script>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

77

<form>

Email ID: <input type='text' id='elem'/>

<input type='button' onclick="validate()" value='Check'/>

</form>

Handling Cookies in JavaScript:

A cookie is a variable that is stored on the visitor's computer. Each time the same computer

requests a page with a browser, it will send the cookie too. With JavaScript, you can both

create and retrieve cookie values. A cookie is nothing but a small text file that's stored in

your browser. It contains some data:

1. A name-value pair containing the actual data

2. An expiry date after which it is no longer valid

3. The domain and path of the server it should be sent to

As soon as you request a page from a server to which a cookie should be sent, the cookie is

added to the HTTP header. Server side programs can then read out the information and

decide that you have the right to view the page you requested. So every time you visit the

site the cookie comes from, information about you is available. This is very nice

sometimes, at other times it may somewhat endanger your privacy. Cookies can be read by

JavaScript too. They're mostly used for storing user preferences.

Examples of cookies:

 Name cookie - The first time a visitor arrives to your web page, he or she must fill

in her/his name. The name is then stored in a cookie. Next time the visitor arrives at

your page, he or she could get a welcome message like "Welcome John Doe!" The

name is retrieved from the stored cookie

 Password cookie - The first time a visitor arrives to your web page, he or she must

fill in a password. The password is then stored in a cookie. Next time the visitor

arrives at your page, the password is retrieved from the cookie

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

78

 Date cookie - The first time a visitor arrives to your web page, the current date is

stored in a cookie. Next time the visitor arrives at your page, he or she could get a

message like "Your last visit was on Tuesday August 11, 2005!" The date is

retrieved from the stored cookie

 And so on.

document.cookie:

Cookies can be created, read and erased by JavaScript. They are accessible through the

property document.cookie. Though you can treat document.cookie as if it's a string, it isn't

really, and you have only access to the name-value pairs. If you want to set a cookie for

this domain with a name-value pair 'ppkcookie1=testcookie' that expires in seven days

from the moment you should write this sentence,

document.cookie = “ppkcookie1=testcookie; expires=Thu, 2 Aug 2001 20:47:11 UTC;

path=/”

1. First the name-value pair ('ppkcookie1=testcookie')

2. then a semicolon and a space

3. then the expiry date in the correct format ('expires=Thu, 2 Aug 2001 20:47:11

UTC')

4. again a semicolon and a space

5. then the path (path=/)

Example:

function createCookie(name, value, days) {

 if (days) {

 var date = new Date();

 date.setTime(date.getTime() + (days * 24 * 60 * 60 * 1000));

 var expires = "; expires=" + date.toGMTString();

 }

 else var expires = "";

 document.cookie = name + "=" + value + expires + "; path=/";

}

function getCookie(c_name) {

 if (document.cookie.length > 0) {

Downloaded from CSIT Tutor

http://www.quirksmode.org/js/strings.html

Web Technology Chapter- Introduction

Jagdish Bhatta

79

 c_start = document.cookie.indexOf(c_name + "=");

 if (c_start != -1) {

 c_start = c_start + c_name.length + 1;

 c_end = document.cookie.indexOf(";", c_start);

 if (c_end == -1) {

 c_end = document.cookie.length;

 }

 return unescape(document.cookie.substring(c_start, c_end));

 }

 }

 return "";

}

More we can set cookie as below with the proper paths, domain and other parameters;

function setCookie(name, value, expires, path, domain)

{

/* Some characters - including spaces - are not allowed in cookies so we escape to

change the value we have entered into a form acceptable to the cookie.*/

var thisCookie = name + "=" + escape(value) +

((expires) ? "; expires=" + expires.toGMTString() : "") +

((path) ? "; path=" + path : "") +

((domain) ? "; domain=" + domain : "") ;

document.cookie = thisCookie;

}

Simply we can display cookie in alert box as;

function showCookie()

{

alert(unescape(document.cookie));

}

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

80

More Example;

<html>

<head>

<script type="text/javascript">

function setCookie()

{

 var name="Cookie1";

 var value="Jagdish";

 var ed=new Date();

ed.setDate(ed.getDate() +2);

 document.cookie = name + "=" + value+" ;expires="+ed.toGMTString()+" ;path=/";

}

function getCookie()

{

 var l=document.cookie.length;

 setCookie();

 var ind=document.cookie.indexOf("Cookie1=");

 if(ind==-1)

 {

 alert("Cookie not found");

 }

 else

 {

 var n=document.cookie.substring(ind+8,l);

 alert("Wel come:"+n);

 }

}

</script> </head>

<body>

 <input type=button value="setcookie" onclick="setCookie()">

 <input type=button value="getcookie" onclick="getCookie()">

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

81

</body> </html>

Handling runtime errors in JavaScript:

An exception is an error that occurs at runtime due to an illegal operation during

execution. Examples of exceptions include trying to reference an undefined variable, or

calling a non-existent method. Syntax errors occur when there is a problem with your

JavaScript syntax. Consider the following examples of syntax errors versus exceptions:

alert("I am missing a closing parenthesis //syntax error

alert(x) //exception assuming "x" isn't defined yet

undefinedfunction() //exception

It is almost impossible for a programmer to write a program without errors. Programming

languages include exceptions, or errors, that can be tracked and controlled. Exception

handling is a very important concept in programming technology. In earlier versions of

JavaScript, the exceptions handling was not so efficient and programmers found it difficult

to use. Later versions of JavaScript resolved this difficulty with exceptions handling

features like try..catch handlers, which presented a more convenient solution for

programmers. Normally whenever the browser runs into an exception somewhere in a

JavaScript code, it displays an error message to the user while aborting the execution of the

remaining code. There are mainly two ways of trapping errors in JavaScript.

 Using try…catch statement

 Using onerror event

Using try…catch statement:

The try..catch statement has two blocks in it: try block and catch block. In the try block,

the code contains a block of code that is to be tested for errors. The catch block contains

the code that is to be executed if an error occurs. The general syntax of try..catch

statement is as follows:

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

82

try

{

 …………

 …………//Block of code which is to be tested for errors

}

catch (err)

{

 …………

 ………… //Block of code which is to be executed if an error occurs

}

When, in the above structure, an error occurs in the try block then the control is

immediately transferred to the catch block with the error information also passed to the

catch block. Thus, the try..catch block helps to handle errors without aborting the program

and therefore proves user-friendly.

<html>

<head>

<script type="text/javascript">

var txt="";

function message()

{

 try

 {

 adddlert("Welcome guest!");

 alert("test");

 }

 catch(err)

 {

 txt="There was an error on this page.\n\n";

 txt+="Click OK to continue viewing this page,\n";

 txt+="or Cancel to return to the home page.\n\n";

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

83

 if(!confirm(txt))

 {

 document.location.href="http://www.w3schools.com/";

 }

 }

 }

</script>

</head>

<body>

 <input type="button" value="View message" onclick="message()" />

</body>

</html>

There is another statement called throw available in JavaScript that can be used along with.

try…catch statements to throw exceptions and thereby helps in generating. General syntax

of this throw statement is as follows:

 throw(exception)

<html>

 <body>

 <script type="text/javascript">

 try

 {

 var a=10;

 var b=0;

 if(b==0)

 {

 throw "Division by zero!!!!"

 }

 }

 catch(err)

 {

 alert(err);

 }

 </script>

</body>

</html>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

84

Although finally is not used as often as catch, it can often be useful. The finally clause is

guaranteed to be executed if any portion of the try block is executed, regardless of how the

code in the try block completes. It is generally used to clean up after the code in the try

clause. If an exception occurs in the try block and there is an associated catch block to

handle the exception, control transfers first to the catch block and then to the finally block.

If there is no local catch block to handle the exception, control transfers first to the finally.

<head>

<script type="text/javascript">

<!--

function myFunc()

{

 var a = 100;

 try

 {

 alert("Value of variable a is : " + a);

 }

catch (e)

{

 alert("Error: " + e.description);

}

finally

{

 alert("Finally block will always execute!");

}

}

//-->

</script>

</head>

<body>

<p>Click the following to see the result:</p>

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

85

<form>

<input type="button" value="Click Me" onclick="myFunc()" />

</form>

</body>

</html>

Using onerror event

The onerror event fires when a page has a script error. This onerror event occurs in

JavaScript when an image or document causes an error during loading. This does not mean

that it is a browser error. This event handler will only be triggered by a JavaScript error,

not a browser error. The general syntax of onerror event is as follows:

onerror=functionname()

function functionname()

{

 //Error Handling Code

}

Example:

<html>

<head>

<script type="text/javascript">

 onerror=exfoerr

 var text1=""

 function exfoerr(msg,url,line)

 {

 text1="Error Displayed\n\n"

 text1+="Error: " + msg + "\n"

 text1+="URL: " + url + "\n"

 text1+="Line Number: " + line + "\n\n"

 text1+="Click OK to continue.\n\n"

 alert(text1)

Downloaded from CSIT Tutor

Web Technology Chapter- Introduction

Jagdish Bhatta

86

 return true

 }

 function display()

 {

 addxlert("Click to Proceed!!!!")

 }

 </script>

 </head>

 <body>

 <input type="button" value="View message"

 onclick="display()" />

 </body>

</html>

In the above example program, the function display() has an error in it (the addalert is

typed wrongly as addxlert). When the program reads this error, the onerror event handler

fires and the function exfor() is called with the three parameters passed to it (the error

message, the url of the page and the line number of error 18)

Downloaded from CSIT Tutor

1

[Unit 2: Issues of Web Technology]

Web Technology (CSC-353)

Jagdish Bhatta

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloaded from CSIT Tutor

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta

2

Architectural Issues of Web Layer:

The web layer is also referred to as the UI layer. The web layer is primarily concerned

with presenting the user interface and the behavior of the application (handling user

interactions/events). While the web layer can also contain logic, core application logic is

usually located in the services layer. The three Layers within the Web Layer are:

 HTML-The Content Layer: The content layer is where you store all the content

that your customers want to read or look at. This includes text and images as well

as multimedia. It's also important to make sure that every aspect of your site is

represented in the content layer. That way, your customers who have JavaScript

turned off or can't view CSS will still have access to the entire site, if not all the

functionality.

 CSS - the Styles Layer: Store all your styles for your Web site in an external style

sheet. This defines the way the pages should look, and you can have separate style

sheets for various media types. Store your CSS in an external style sheet so that

you can get the benefits of the style layer across the site.

 JavaScript - the Behavior Layer: JavaScript is the most commonly used language

for writing the behavior layer; ASP, CGI and PHP can also generate Web page

behaviors. However, when most developers refer to the behavior layer, they mean

that layer that is activated directly in the Web browser - so JavaScript is nearly

always the language of choice. You use this layer to interact directly with the DOM

or Document Object Model.

When you're creating a Web page, it is important to keep the layers separate. Using

external style sheets is the best way to separate your content from your design. And the

same is true for using external JavaScript files. Some of the benefits of separating the

layers are:

 Shared resources: When you write an external CSS file or JavaScript file, you can

use that file by any page on your Web site. There is no duplication of effort, and

whenever the file changes, it changes for every page that uses it without you

making more than one change.

 Faster downloads: Once the script or stylesheet has been downloaded by your

customer the first time, it is cached. Then every other page that is downloaded

loads more quickly in the browser window.

 Multi-person teams: If you have more than one person working on a Web site at

once, you can divide up the workload without worrying about permissions or

content management. You can also hire people who are style/design experts to

work on the CSS while your scripters work on the JavaScript, and your writers

work in the content files.

Downloaded from CSIT Tutor

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta

3

 Accessibility: External style sheets and script files are more accessible to more

browsers, because they can be ignored more easily, and because they provide more

options. For example, you can set up a style sheet that is displayed only for screen

readers or a script library that's only used by people on cell phones.

 Backwards compatibility: When you have a site that is designed with the

development layers, it will be more backwards compatible because browsers that

can't use technology like CSS and JavaScript can still view the HTML.

HTTP (Hypertext Transfer Protocol):

HTTP stands for Hypertext Transfer Protocol. It is a TCP/IP based communication

protocol which is used to deliver virtually all files and other data, collectively called

resources, on the World Wide Web. These resources could be HTML files, image files,

query results, or anything else. A browser is works as an HTTP client because it sends

requests to an HTTP server which is called Web server. The Web Server then sends

responses back to the client. The standard and default port for HTTP servers to listen on is

80 but it can be changed to any other port like 8080 etc. There are three important things

about HTTP of which you should be aware:

 HTTP is connectionless: After a request is made, the client disconnects from the

server and waits for a response. The server must re-establish the connection after it

processes the request.

 HTTP is media independent: Any type of data can be sent by HTTP as long as

both the client and server know how to handle the data content. How content is

handled is determined by the MIME specification.

 HTTP is stateless: This is a direct result of HTTP's being connectionless. The

server and client are aware of each other only during a request. Afterwards, each

forgets the other. For this reason neither the client nor the browser can retain

information between different requests across the web pages.

Following diagram shows where HTTP Protocol fits in communication;

Downloaded from CSIT Tutor

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta

4

Like most network protocols, HTTP uses the client-server model: An HTTP client opens a

connection and sends a request message to an HTTP server; the server then returns a

response message, usually containing the resource that was requested. After delivering the

response, the server closes the connection. The format of the request and response

messages is similar and will have following structure:

 An initial line CRLF

 Zero or more header lines CRLF

 A blank line i.e. a CRLF

 An optional message body like file, query data or query output.

CR and LF here mean ASCII values 13 and 10. The initial line is different for the request

than for the response. A request line has three parts, separated by spaces: An HTTP

Method Name, the local path of the requested resource, the version of HTTP being used.

Example of initial line for Request Message is: “GET /path/to/file/index.html HTTP/1.0”.

The initial response line, called the status line, also has three parts separated by spaces:

The version of HTTP being used, a response status code that gives the result of the request,

an English reason phrase describing the status code. Example, HTTP/1.0 200 OK or

“HTTP/1.0 404 Not Found”

Header lines provide information about the request or response, or about the object sent in

the message body. The header lines are in the usual text header format, which is: one line

per header, of the form "Header-Name: value", ending with CRLF. Example of Header

Line is “User-agent: Mozilla/3.0Gold” or “Last-Modified: Fri, 31 Dec 1999 23:59:59

GMT”.

 An HTTP message may have a body of data sent after the header lines. In a response, this

is where the requested resource is returned to the client (the most common use of the

message body), or perhaps explanatory text if there's an error. In a request, this is where

user-entered data or uploaded files are sent to the server.

HTTP: header fields

HTTP header fields are components of the message header of requests and responses in the

Hypertext Transfer Protocol (HTTP). They define the operating parameters of an HTTP

transaction.

The header fields are transmitted after the request or response line, the first line of a

message. Header fields are colon-separated name-value pairs in clear-text string format,

terminated by a carriage return (CR) and line feed (LF) character sequence. The end of the

header fields is indicated by an empty field, resulting in the transmission of two

consecutive CR-LF pairs. Long lines can be folded into multiple lines; continuation lines

are indicated by presence of space (SP) or horizontal tab (HT) as first character on next

line. Few fields can also contain comments (i.e. in. User-Agent, Server, Via fields), which

can be ignored by software.

Downloaded from CSIT Tutor

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta

5

There are no limits to size of each header field name or value, or number of headers in

standard itself. However most servers, clients and proxy software, impose some limits for

practical and security reasons. For example; Apache 2.3 server by default limits each

header size to 8190 bytes, and there can be at most 100 headers in single request.

HTTP Session:

An HTTP session is a sequence of network request-response transactions. An HTTP client

initiates a request by establishing a Transmission Control Protocol (TCP) connection to a

particular port on a server (typically port 80; see List of TCP and UDP port numbers). An

HTTP server listening on that port waits for a client's request message. Upon receiving the

request, the server sends back a status line, such as "HTTP/1.1 200 OK", and a message of

its own, the body of which is perhaps the requested resource, an error message, or some

other information

File Transfer Protocol:

File Transfer Protocol (FTP) lives up to its name and provides a method for transferring

files over a network from one computer to another. More generally, it provides for some

simple file management on the contents of a remote computer. It is an old protocol and is

used less than it was before the World Wide Web came along. Today, its primary use is

uploading files to a Web site. It can also be used for downloading from the Web but, more

often than not, downloading is done via HTTP. Sites that have a lot of downloading

(software sites, for example) will often have an FTP server to handle the traffic. If FTP is

involved, the URL will have ftp: at the front.

The File Transfer Protocol is used to send files from one system to another under user

commands. Both text and binary files are accommodated and the protocol provides

features for controlling user access. When a user wishes to engage in File transfer, FTP

sets up a TCP connection to the target system for the exchange of control messages. These

allow used ID and password to be transmitted and allow the user to specify the file and file

action desired. Once file transfer is approved, a second TCP connection is set up for data

transfer. The file is transferred over the data connection, without the overhead of headers,

or control information at the application level. When the transfer is complete, the control

connection is used to signal the completion and to accept new file transfer commands.

FTP can be run in active or passive mode, which determines how the data connection is

established. In active mode, the client sends the server the IP address and port number on

which the client will listen, and the server initiates the TCP connection. at the condition

when the client is behind a firewall and unable to accept incoming TCP connections,

passive mode may be used. In this mode the client sends a PASV command to the server

and receives an IP address and port number in return. The client uses these to open the data

connection to the server. Data transfer can be done in any of three modes:

Downloaded from CSIT Tutor

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta

6

 Stream mode: Data is sent as a continuous stream, relieving FTP from doing

any processing. Rather, all processing is left up to TCP. No End-of-file

indicator is needed, unless the data is divided into records.

 Block mode: FTP breaks the data into several blocks (block header, byte count,

and data field) and then passes it on to TCP.

 Compressed mode: Data is compressed using a single algorithm (usually run-

length encoding).

Client/Server Model:

The client–server model is a computing model that acts as distributed application which

partitions tasks or workloads between the providers of a resource or service, called servers,

and service requesters, called clients.

Often clients and servers communicate over a

computer network on separate hardware, but both client and server may reside in the same

system. A server machine is a host that is running one or more server programs which

share their resources with clients. A client does not share any of its resources, but requests

a server's content or service function. Clients therefore initiate communication sessions

with servers which await incoming requests.

Client/Server Architecture:

Client server network architecture consists of two kinds of computers: clients and servers.

Clients are the computers that that do not share any of its resources but requests data and

other services from the server computers and server computers provide services to the

client computers by responding to client computers requests. Normally servers are

powerful computers and clients are less powerful personal computers. Web servers are

included as part of a larger package of internet and intranet related programs for serving e-

mail, downloading requests for FTP files and building and publishing web pages.

Downloaded from CSIT Tutor

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta

7

Advantages

 The client/ server architecture reduces network traffic by providing a query

response to the user rather than transferring total files.

 The client/ server model improves multi-user updating through a graphical user

interface (GUI) front end to the shared database.

 Easy to implement security policies, since the data are stored in central location

 Simplified network administration

Disadvantages

 Failure of the server causes whole network to be collapsed

 Expensive than P2P, Dedicated powerful servers are needed

 Extra effort are needed for administering and managing the server.

Client/Sever architecture can be of different model based on the number of layers it

holds. Some of them are;

 2-Tier Architecture

2-tier architecture is used to describe client/server systems where the client requests

resources and the server responds directly to the request, using its own resources.

This means that the server does not call on another application in order to provide

part of the service. It runs the client processes separately from the server processes,

usually on a different computer:

– The client processes provide an interface for the customer, and gather and

present data usually on the customer’s computer. This part of the

application is the presentation layer

– The server processes provide an interface with the data store of the

business. This part of the application is the data layer

– The business logic that validates data, monitors security and permissions,

and performs other business rules can be housed on either the client or the

server, or split between the two.

• Fundamental units of work required to complete the business

process

• Business rules can be automated by an application program.

Downloaded from CSIT Tutor

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta

8

 3-Tier Architecture

In 3-tier architecture, there is an intermediary level, meaning the architecture is

generally split up between:

– A client, i.e. the computer, which requests the resources, equipped with a

user interface (usually a web browser) for presentation purposes

– The application server (also called middleware), whose task it is to provide

the requested resources, but by calling on another server

– The data server, which provides the application server with the data it

requires

 N-Tier Architecture (multi-tier)

N-tier architecture (with N more than 3) is really 3 tier architectures in which the

middle tier is split up into new tiers. The application tier is broken down into

separate parts. What these parts are differs from system to system. The following

picture shows it:

The primary advantage of N-tier architectures is that they make load balancing

possible. Since the application logic is distributed between several servers,

processing can then be more evenly distributed among those servers. N-tiered

architectures are also more easily scalable, since only servers experiencing high

demand, such as the application server, need be upgraded. The primary

disadvantage of N-tier architectures is that it is also more difficult to program and

test an N-tier architecture due to its increased complexity.

Downloaded from CSIT Tutor

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta

9

Advantages of Multi-Tier Client/Server architectures include:

 Changes to the user interface or to the application logic are largely independent

from one another, allowing the application to evolve easily to meet new

requirements.

 Network bottlenecks are minimized because the application layer does not transmit

extra data to the client, only what is needed to handle a task.

 The client is insulated from database and network operations. The client can access

data easily and quickly without having to know where data is or how many servers

are on the system.

 Database connections can be 'pooled' and thus shared by several users, which

greatly reduces the cost associated with per-user licensing.

Downloaded from CSIT Tutor

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta

10

 The organization has database independence because the data layer is written using

standard SQL which is platform independent. The enterprise is not tied to vendor-

specific stored procedures.

 The application layer can be written in standard third or fourth generation

languages, such as ASP, PHP with which the organization's in-house programmers

are experienced.

What kind of systems can benefit?

Generally, any Client/Server system can be implemented in an 'N-Tier' architecture, where

application logic is partitioned among various servers. This application partitioning creates

an integrated information infrastructure which enables consistent, secure, and global access

to critical data. A significant reduction in network traffic, which leads to faster network

communications, greater reliability, and greater overall performance is also made possible

in a 'N-Tier' Client/Server architecture.

Downloaded from CSIT Tutor

1

[Unit 3: XML]

Web Technology (CSC-353)

Jagdish Bhatta

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

2

 Introduction::

As we have studied in unit one that HTML is designed to display data. In contrast, XML is

designed to transport and store data. XML stands for EXtensible Markup Language and is

much like HTML. XML was designed to carry data, not to display data. XML tags are not

predefined. You must define your own tags. XML is designed to be self-descriptive.

Extensible Markup Language (XML) is a markup language that defines a set of rules for

encoding documents in a format that is both human-readable and machine-readable.

XML is not a replacement for HTML. XML and HTML were designed with different

goals:

 XML was designed to transport and store data, with focus on what data is

 HTML was designed to display data, with focus on how data looks

HTML is about displaying information, while XML is about carrying information.

Maybe it is a little hard to understand, but XML does not DO anything. XML was created

to structure, store, and transport information. The following example is a note to Tulsi,

from Giri, stored as XML:

<note>

<to>Tulsi</to>

<from>Giri</from>

<heading>Reminder</heading>

<body>Don't forget to bunk web tech class at Patan!</body>

</note>

The note above is quite self descriptive. It has sender and receiver information, it also has a

heading and a message body. But still, this XML document does not DO anything. It is just

information wrapped in tags. Someone must write a piece of software to send, receive or

display it.

The tags in the example above (like <to> and <from>) are not defined in any XML

standard. These tags are "invented" by the author of the XML document. That is because

the XML language has no predefined tags. However, the tags used in HTML are

predefined. HTML documents can only use tags defined in the HTML standard (like <p>,

<h1>, etc.). In contrast, XML allows the author to define his/her own tags and his/her own

document structure. The XML processor can not tell us which elements and attributes are

valid. As a result we need to define the XML markup we are using. To do this, we need to

define the markup language’s grammar. There are numerous “tools” that can be used to

build an XML language – some relatively simple, some much more complex. They include

DTD (Document Type Definition), RELAX, TREX, RELAX NG, XML Schema,

Schmatron, etc.

The design goals for XML are:

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

3

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum,

ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

XML Usages

XML is used in many aspects of web development, often to simplify data storage and

sharing.

XML Separates Data from HTML: If you need to display dynamic data in your HTML

document, it will take a lot of work to edit the HTML each time the data changes. With

XML, data can be stored in separate XML files. This way you can concentrate on using

HTML for layout and display, and be sure that changes in the underlying data will not

require any changes to the HTML. With a few lines of JavaScript code, you can read an

external XML file and update the data content of your web page.

XML Simplifies Data Sharing: In the real world, computer systems and databases

contain data in incompatible formats. XML data is stored in plain text format. This

provides a software- and hardware-independent way of storing data. This makes it much

easier to create data that can be shared by different applications.

XML Simplifies Data Transport: One of the most time-consuming challenges for

developers is to exchange data between incompatible systems over the Internet.

Exchanging data as XML greatly reduces this complexity, since the data can be read by

different incompatible applications.

XML Simplifies Platform Changes: Upgrading to new systems (hardware or software

platforms), is always time consuming. Large amounts of data must be converted and

incompatible data is often lost. XML data is stored in text format. This makes it easier to

expand or upgrade to new operating systems, new applications, or new browsers, without

losing data.

XML Makes Your Data More Available: Different applications can access your data,

not only in HTML pages, but also from XML data sources. With XML, your data can be

available to all kinds of "reading machines" (Handheld computers, voice machines, news

feeds, etc), and make it more available for blind people, or people with other disabilities.

XML Used to Create New Internet Languages: A lot of new Internet languages are

created with XML. Here are some examples:

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

4

 XHTML

 WSDL (Web Services Description Language) for describing available web services

 WAP and WML (Wireless Markup Language) as markup languages for handheld

devices

 RSS (Really Simple Syndication / Rich Site Summary) languages for news feeds

 RDF (Resource Description Framework), a family of w3c spec, and OWL (Web

Ontology Language) for describing resources and ontology

 SMIL (Synchronized Multimedia Integration Language) for describing multimedia

for the web

XML Tree

XML documents form a tree structure that starts at "the root" and branches to "the leaves".

XML documents use a self-describing and simple syntax:

<?xml version="1.0" encoding="ISO-8859-1"?>

<note>

 <to>Tulsi</to>

 <from>Giri</from>

 <heading>Reminder</heading>

 <body>Don't forget to bunk the web tech class at Patan!</body>

</note>

The first line is the XML declaration. It defines the XML version (1.0) and the encoding

used (ISO-8859-1 = Latin-1/West European character set). The next line describes the root

element of the document (like saying: "this document is a note"):

<note>

The next 4 lines describe 4 child elements of the root (to, from, heading, and body):

<to>Tulsi</to>

<from>Giri</from>

<heading>Reminder</heading>

<body>Don't forget to bunk the web tech class at Patan!</body>

And finally the last line defines the end of the root element:

</note>

You can assume, from this example, that the XML document contains a note to Tulsi from

Giri.

Thus, XML documents must contain a root element. This element is "the parent" of all

other elements. The elements in an XML document form a document tree. The tree starts at

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

5

the root and branches to the lowest level of the tree. All elements can have sub elements

(child elements):

<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root>

The terms parent, child, and sibling are used to describe the relationships between

elements. Parent elements have children. Children on the same level are called siblings

(brothers or sisters). All elements can have text content and attributes (just like in HTML).

XML Syntax Rules

The syntax rules of XML are very simple and logical. The rules are easy to learn, and easy

to use.

1. All XML Elements Must Have a Closing Tag. In HTML, some elements may not

have to have a closing tag, like;

<p>This is a paragraph.

In XML, it is illegal to omit the closing tag. All elements must have a closing tag:

<p>This is a paragraph.</p>

<hello> This is hello </hello>

2. XML tags are case sensitive. The tag <Letter> is different from the tag <letter>.

Opening and closing tags must be written with the same case:

<Message>This is incorrect</message>

<message>This is correct</message>

3. XML Elements Must be Properly Nested. In HTML, you might see improperly

nested elements:

<i>This text is bold and italic</i>

In XML, all elements must be properly nested within each other:

<i>This text is bold and italic</i>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

6

4. XML Documents Must Have a Root Element. XML documents must contain one

element that is the parent of all other elements. This element is called the root

element.

<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root>

5. XML Attribute Values Must be Quoted. XML elements can have attributes in

name/value pairs just like in HTML. In XML, the attribute values must always be

quoted. Study the two XML documents below. The first one is incorrect, the

second is correct:

<note date=06/01/2012>

 <to>Tulsi</to>

 <from>Giri</from>

</note>

<note date="06/01/2012">

 <to>Tulsi</to>

 <from>Giri</from>

</note>

The error in the first document is that the date attribute in the note element is not

quoted.

6. Entity Reference. Some characters have a special meaning in XML. If you place a

character like "<" inside an XML element, it will generate an error because the

parser interprets it as the start of a new element. This will generate an XML error:

<message>if salary < 1000 then</message>

To avoid this error, replace the "<" character with an entity reference:

<message>if salary < 1000 then</message>

There are 5 predefined entity references in XML:

< < less than

> > greater than

& & ampersand

' ' apostrophe

" " quotation mark

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

7

7. Comments in XML. The syntax for writing comments in XML is similar to that of

HTML.

<!-- This is a comment -->

8. White-space is preserved in XML. HTML truncates multiple white-space

characters to one single white-space:

HTML: Hello Tulsi

Output: Hello Tulsi

With XML, the white-space in a document is not truncated.

XML Elements

An XML document contains XML Elements. An XML element is everything from

(including) the element's start tag to (including) the element's end tag.

An element can contain:

 other elements

 text

 attributes

 or a mix of all of the above...

Consider an example;

<bookstore>

 <book category="CHILDREN">

 <title>Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

 </book>

 <book category="WEB">

 <title>Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

 </book>

</bookstore>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

8

In the example above, <bookstore> and <book> have element contents, because they

contain other elements. <book> also has an attribute (category="CHILDREN"). <title>,

<author>, <year>, and <price> have text content because they contain text.

XML Naming Rules

XML elements must follow these naming rules:

 Names can contain letters, numbers, and other characters

 Names cannot start with a number or punctuation character

 Names cannot start with the letters xml (or XML, or Xml, etc)

 Names cannot contain spaces

 Any name can be used, no words are reserved.

Best Naming Practices

 Make names descriptive. Names with an underscore separator are nice:

<first_name>, <last_name>.

 Names should be short and simple, like this: <book_title> not like this:

<the_title_of_the_book>.

 Avoid "-" characters. If you name something "first-name," some software may

think you want to subtract name from first.

 Avoid "." characters. If you name something "first.name," some software may think

that "name" is a property of the object "first."

 Avoid ":" characters. Colons are reserved to be used for something called

namespaces (more later).

 XML documents often have a corresponding database. A good practice is to use the

naming rules of your database for the elements in the XML documents.

 Non-English letters like éòá are perfectly legal in XML, but watch out for problems

if your software vendor doesn't support them.

XML Elements are Extensible

XML elements can be extended to carry more information. Look at the following XML

example:

<note>

<to>Tulsi</to>

<from>Giri</from>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

9

<body>Don't forget to bunk the web tech class at Patan!</body>

</note>

Let's imagine that we created an application that extracted the <to>, <from>, and <body>

elements from the XML document to produce this output:

MESSAGE

To: Tulsi

From: Giri

Don't forget to bunk the web tech class at Patan!

Suppose the XML document has been modified by adding some extra information to it

like:

<note>

<date>2012-01-06</date>

<to>Tulsi</to>

<from>Giri</from>

<heading>Reminder</heading>

<body>Don't forget to bunk thee web tech class at Patan!</body>

</note>

Should the application break or crash?

No. The application should still be able to find the <to>, <from>, and <body> elements in

the XML document and produce the same output. Thus, one of the beauties of XML, is

that it can be extended without breaking applications.

XML Attributes

XML elements can have attributes, just like HTML. Attributes provide additional

information about an element. In HTML, attributes provide additional information about

elements:

Attributes often provide information that is not a part of the data. In the example below,

the file type is irrelevant to the data, but can be important to the software that wants to

manipulate the element:

<file type="gif">computer.gif</file>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

10

Attribute values must always be quoted. Either single or double quotes can be used. For a

person's sex, the person element can be written like this:

<person sex="male">

or like this:

<person sex='male'>

If the attribute value itself contains double quotes you can use single quotes, like in this

example:

<gangster name='Chota "Shotgun" Chetan'>

or you can use character entities:

<gangster name="Chota "Shotgun" Chetan">

XML Elements vs. Attributes

Take a look at these examples:

<person sex="male">

 <firstname>Jagdish</firstname>

 <lastname>Bhatta</lastname>

</person>

<person>

 <sex>male</sex>

 <firstname>Jagdish</firstname>

 <lastname>Bhatta</lastname>

</person>

In the first example sex is an attribute. In the last, sex is an element. Both examples

provide the same information. There are no rules about when to use attributes or when to

use elements. Attributes are handy in HTML. In XML my advice is to avoid them. Use

elements instead.

Writing in different ways

The following three XML documents contain exactly the same information:

A date attribute is used in the first example:

<note date="10/01/2008">

 <to>Tulsi</to>

 <from>Giri</from>

 <heading>Reminder</heading>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

11

 <body>Don't forget to bunk the web tech class at Patan!</body>

</note>

A date element is used in the second example:

<note>

 <date>10/01/2008</date>

 <to>Tulsi</to>

 <from>Giri</from>

 <heading>Reminder</heading>

 <body>Don't forget to bunk the web tech class at Patan!</body>

</note>

An expanded date element is used in the third:

<note>

 <date>

 <day>10</day>

 <month>01</month>

 <year>2008</year>

 </date>

 <to>Tulsi</to>

 <from>Giri</from>

 <heading>Reminder</heading>

 <body>Don't forget to bunk the web tech class at Patan!</body>

</note>

Restrictions with XML Attributes

Some of the problems with using attributes are:

 attributes cannot contain multiple values (elements can)

 attributes cannot contain tree structures (elements can)

 attributes are not easily expandable (for future changes)

Attributes are difficult to read and maintain. Use elements for data. Use attributes for

information that is not relevant to the data.

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

12

XML Attributes for Metadata

Sometimes ID references are assigned to elements. These IDs can be used to identify XML

elements in much the same way as the id attribute in HTML. This example demonstrates

this:

<messages>

 <note id="501">

 <to>Tulsi</to>

 <from>Giri</from>

 <heading>Reminder</heading>

 <body>Don't forget to bunk the web tech class at Patan!</body>

 </note>

 <note id="502">

 <to>Giri</to>

 <from>Tulsi</from>

 <heading>Re: Reminder</heading>

 <body>Ok Giri dai !!</body>

 </note>

</messages>

The id attributes above are for identifying the different notes. It is not a part of the note

itself. In other words, metadata (data about data) should be stored as attributes, and the data

itself should be stored as elements.

XML Validation

XML with correct syntax is "Well Formed" XML. XML validated against a DTD is

"Valid" XML.

Well Formed XML Documents

A "Well Formed" XML document has correct XML syntax. The syntax rules as described

in previous sections are:

 XML documents must have a root element

 XML elements must have a closing tag

 XML tags are case sensitive

 XML elements must be properly nested

 XML attribute values must be quoted

Consider the earlier example;

<?xml version="1.0" encoding="ISO-8859-1"?>

<note>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

13

<to>Tulsi</to>

<from>Giri</from>

<heading>Reminder</heading>

<body>Don’t forget to bunk the web tech class at Patan!</body>

</note>

Now, a "Valid" XML document is a "Well Formed" XML document, which also conforms

to the rules of a Document Type Definition (DTD):

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE note SYSTEM "Note.dtd">

<note>

<to>Tulsi</to>

<from>Giri</from>

<heading>Reminder</heading>

<body>Don’t forget to bunk the web tech class at Patan!</body>

</note>

The DOCTYPE declaration in the example above, is a reference to an external DTD file.

The purpose of a DTD is to define the structure of an XML document. It defines the

structure with a list of legal elements. For above example the DTD seems like;

<!DOCTYPE note

[

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

W3C supports an XML-based alternative to DTD, called XML Schema:

<xs:element name="note">

<xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

</xs:element>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

14

XML schema:

An XML schema is a description of a type of XML document, typically expressed in

terms of constraints on the structure and content of documents of that type, above and

beyond the basic syntactical constraints imposed by XML itself. These constraints are

generally expressed using some combination of grammatical rules governing the order of

elements, Boolean predicates that the content must satisfy, data types governing the

content of elements and attributes, and more specialized rules such as uniqueness and

referential integrity constraints.

Technically, a schema is an abstract collection of metadata, consisting of a set of schema

components: chiefly element and attribute declarations and complex and simple type

definitions. These components are usually created by processing a collection of schema

documents, which contain the source language definitions of these components. In popular

usage, however, a schema document is often referred to as a schema.

Schema documents are organized by namespace: all the named schema components belong

to a target namespace, and the target namespace is a property of the schema document as a

whole. A schema document may include other schema documents for the same namespace,

and may import schema documents for a different namespace.

There are languages developed specifically to express XML schemas. The Document

Type Definition (DTD) language, which is native to the XML specification, is a schema

language that is of relatively limited capability, but that also has other uses in XML aside

from the expression of schemas. Two more expressive XML schema languages in

widespread use are XML Schema (with a capital S) and RELAX NG (REgular LAnguage

for XML Next Generation).

There is some confusion as to when to use the capitalized spelling "Schema" and when to

use the lowercase spelling. The lowercase form is a generic term and may refer to any type

of schema, including DTD, XML Schema (aka XSD), RELAX NG, or others, and should

always be written using lowercase except when appearing at the start of a sentence. The

form "Schema" (capitalized) in common use in the XML community always refers to W3C

XML Schema.

XML Namespace:

XML Namespaces provide a method to avoid element name conflicts. In XML, element

names are defined by the developer. This often results in a conflict when trying to mix

XML documents from different XML applications. Consider following examples;

This XML carries HTML table information:

<table>

 <tr>

 <td>Apples</td>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

15

 <td>Bananas</td>

 </tr>

</table>

This XML carries information about a table (a piece of furniture):

<table>

 <name>African Coffee Table</name>

 <width>80</width>

 <length>120</length>

</table>

If these XML fragments were added together, there would be a name conflict. Both contain

a <table> element, but the elements have different content and meaning.

An XML parser will not know how to handle these differences.

Thus, xmlns tagged XML namespaces are used for providing uniquely named elements

and attributes in an XML document. They are defined in a W3C recommendation. An

XML instance may contain element or attribute names from more than one XML

vocabulary. If each vocabulary is given a namespace, the ambiguity between identically

named elements or attributes can be resolved. The XML namespace is a special type of

reserved XML attribute that you place in an XML tag. The reserved attribute is actually

more like a prefix that you attach to any namespace you create. This attribute prefix is

"xmlns:", which stands for XML NameSpace. The colon is used to separate the prefix

from your namespace that you are creating.

A namespace name is a uniform resource identifier (URI). Typically, the URI chosen for

the namespace of a given XML vocabulary describes a resource under the control of the

author or organisation defining the vocabulary, such as a URL for the author's Web server.

However, the namespace specification does not require nor suggest that the namespace

URI be used to retrieve information; it is simply treated by an XML parser as a string. For

example, the document at http://www.w3.org/1999/xhtml itself does not contain any code

The name conflicts in above mentioned example can be handled by using the concept of

namespace as a name prefix, as below ;

This XML carries information about an HTML table, and a piece of furniture:

<h:table>

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

16

<f:table>

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

When using prefixes in XML, a so-called namespace for the prefix must be defined. The

namespace is defined by the xmlns attribute in the start tag of an element. The namespace

declaration has the following syntax. xmlns:prefix="URI".

<root>

<h:table xmlns:h="http://www.w3.org/TR/html4/">

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

<f:table xmlns:f="http://www.w3schools.com/furniture">

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

</root>

In the example above, the xmlns attribute in the <table> tag give the h: and f: prefixes a

qualified namespace. When a namespace is defined for an element, all child elements with

the same prefix are associated with the same namespace.

Namespaces can be declared in the elements where they are used or in the XML root

element:

<root

xmlns:h="http://www.w3.org/TR/html4/"

xmlns:f="http://www.w3schools.com/furniture">

<h:table>

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

<f:table>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

17

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

</root>

The namespace URI is not used by the parser to look up information. The purpose is to

give the namespace a unique name. However, often companies use the namespace as a

pointer to a web page containing namespace information.

XML schema languages

- DTD

- XML Schema

Document Type Definition (DTD)

DTD is an approach for defining the structure of XML Document. It is an XML schema

language whose purpose is to define legal building blocks of an XML document. A DTD

defines the document structure with a list of legal elements and attributes.

Document Type Definition (DTD) is a set of markup declarations that define a document

type for SGML-family markup languages (SGML, XML, HTML). DTDs were a precursor

to XML schema and have a similar function, although different capabilities.

DTDs use a terse formal syntax that declares precisely which elements and references may

appear where in the document of the particular type, and what the elements’ contents and

attributes are. DTDs also declare entities which may be used in the instance document.

XML uses a subset of SGML DTD.

We use DTD because with a DTD, each of your XML files can carry a description of its

own format. With a DTD, independent groups of people can agree to use a standard

DTD for interchanging data. Your application can use a standard DTD to verify that the

data you receive from the outside world is valid. You can also use a DTD to verify your

own data.

A Document Type Declaration associates a DTD with an XML document. Document Type

Declarations appear in the syntactic fragment doctypedecl near the start of an XML

document.

The declaration establishes that the document is an instance of the type defined

by the referenced DTD.

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

18

DTDs make two sorts of declaration:

 an optional external subset

 an optional internal subset

The declarations in the internal subset form part of the Document Type Declaration in the

document itself. The declarations in the external subset are located in a separate text file.

If the DTD is declared inside the XML file, it should be wrapped in a DOCTYPE

definition with the following syntax:

<!DOCTYPE root-element [element-declarations]>

Example XML document with an internal DTD:

<?xml version="1.0"?>

<!DOCTYPE note [

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

<note>

<to>Tulsi</to>

<from>Giri</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend</body>

</note>

The DTD above is interpreted like this:

 !DOCTYPE note defines that the root element of this document is note

 !ELEMENT note defines that the note element contains four elements:

"to,from,heading,body"

 !ELEMENT to defines the to element to be of type "#PCDATA"

 !ELEMENT from defines the from element to be of type "#PCDATA"

 !ELEMENT heading defines the heading element to be of type "#PCDATA"

 !ELEMENT body defines the body element to be of type "#PCDATA"

If the DTD is declared in an external file, it should be wrapped in a DOCTYPE

definition. Here, DTD is present in separate file and a reference is placed to its location in

the document. External DTD’s are easy to apply to multiple documents. In case, a

modification is to be made in future, it could be done in just one file and the onerous task

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

19

of doing it for all the documents is omitted. External DTDs are of two types: private and

public.

Private external DTDs are identified by the keyword SYSTEM, and are intended for use

by a single author or group of authors. Its syntax is:

<!DOCTYPE root-element SYSTEM "DTD location">.

For Example, the listed below is the same XML document as above, but with an external

DTD.

<?xml version="1.0"?>

<!DOCTYPE note SYSTEM "note.dtd">

<note>

 <to>Tulsi</to>

 <from>Girii</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

And this is the file "note.dtd" which contains the DTD:

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

Public external DTDs are identified by the keyword PUBLIC and are intended for broad

use. Its syntax is: <!DOCTYPE root_element PUBLIC "DTD_name" "DTD_location">.

The DTD_name follows the syntax:

"prefix//owner_of_the_DTD//description_of_the_DTD//ISO 639_language_identifier".

For example,

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

"http://www.w3.org/TR/REC-html40/loose.dtd">

The following prefixes are allowed in the DTD name:

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

20

Prefix: Definition:

ISO The DTD is an ISO standard. All ISO standards are approved.

+ The DTD is an approved non-ISO standard.

- The DTD is an unapproved non-ISO standard.

Defining Elements:

Elements are the main building blocks of XML documents. In a DTD, elements are

declared with an ELEMENT declaration with the following syntax.

<!ELEMENT element-name category>

Or

<!ELEMENT element-name (element-content)>

Empty elements are declared with the category keyword EMPTY. Its syntax is:

<!ELEMENT element-name EMPTY>. For example, <!ELEMENT br EMPTY>.

Elements with only parsed character data are declared with #PCDATA inside

parentheses. Its syntax is: <!ELEMENT element-name (#PCDATA)>. For example,

<!ELEMENT from (#PCDATA)>.

Elements with any content are declared with the category keyword ANY, can contain any

combination of parsable data. Its syntax is: <!ELEMENT element-name ANY>. For

example, <!ELEMENT note ANY>.

Elements with one or more children are declared with the name of the children elements

inside parentheses. Its syntax is <!ELEMENT element-name (child1, child2,…)>. For

example, <!ELEMENT note (to,from,body)>.

When children are declared in a sequence separated by commas, the children must appear

in the same sequence in the document. In a full declaration, the children must also be

declared, and the children can also have children.

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

21

We can declare only one occurrence of an element. Its syntax is: <!ELEMENT element-

name (child-name)>. For example, <!ELEMENT note (message)>. This example declares

that the child element "message" must occur once, and only once inside the "note" element.

We can also declare minimum one occurrence of an element. Its syntax is <!ELEMENT

element-name (child-name+)>. For example, <!ELEMENT note (message+)>. The + sign

in the example above declares that the child element "message" must occur one or more

times inside the "note" element.

Note: We can use * in place of + to declare zero or more occurrence of an element. We can

use ? in place of + to declare zero or one occurrence of an element

We can also declare either/or content. For example, <!ELEMENT note

(to,from,header,(message|body))>. This example declares that the "note" element must

contain a "to" element, a "from" element, a "header" element, and either a "message" or a

"body" element.

We can declare mixed content. For example, <!ELEMENT note

(#PCDATA|to|from|header|message)*>. This example declares that the "note" element can

contain zero or more occurrences of parsed character data, "to", "from", "header", or

"message" elements.

Defining Attributes

In a DTD, attributes are declared with an ATTLIST declaration. An attribute declaration

has the following syntax:

<!ATTLIST element-name attribute-name attribute-type default-value>

For example,

<!ATTLIST payment type CDATA "check">

And its XML example is

<payment type="check" />

The attribute-type can be one of the following:

Type Description

CDATA The value is character data (text that doesn’t contain

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

22

markup)

(en1|en2|..) The value must be one from an enumerated list

ID The value is a unique id

IDREF The value is the id of another element

IDREFS The value is a list of other ids

NMTOKEN The value is a valid XML name

NMTOKENS The value is a list of valid XML names separated by

whitespace

ENTITY The name of an entity (which must be declared in the

DTD)

ENTITIES The value is a list of entities, separated by whitespace

NOTATION The value is a name of a notation (which must be

declared in the DTD)

xml: The value is a predefined xml value

The default-value can be one of the following:

Value Explanation

Value The default value of the attribute. For example,

<!ATTLIST square width CDATA "0">

#REQUIRED The attribute is required. For example,

<!ATTLIST person number CDATA #REQUIRED>

#IMPLIED The attribute is not required (optional). For example,

<!ATTLIST contact fax CDATA #IMPLIED>

#FIXED value

The attribute value is fixed. For example,

<!ATTLIST sender company CDATA #FIXED

"Microsoft">

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

23

 A Default attribute value:

Example:

DTD

<!ELEMENT square EMPTY>

<!ATTLIST square width CDATA "0">

Valid XML:

<square width="100" />

In the example above, the "square" element is defined to be an empty element with a

"width" attribute of type CDATA. If no width is specified, it has a default value of 0.

#REQUIRED:

Syntax:

<!ATTLIST element-name attribute-name attribute-type #REQUIRED>

Example:

DTD:

<!ATTLIST person number CDATA #REQUIRED>

Valid XML:

<person number="5677" />

Invalid XML:

<person />

Use the #REQUIRED keyword if you don't have an option for a default value, but still

want to force the attribute to be present.

#IMPLIED:

Syntax:

<!ATTLIST element-name attribute-name attribute-type #IMPLIED>

Example:

DTD:

<!ATTLIST contact fax CDATA #IMPLIED>

Valid XML:

<contact fax="555-667788" />

Valid XML:

<contact />

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

24

Use the #IMPLIED keyword if you don't want to force the author to include an attribute,

and you don't have an option for a default value.

#FIXED:

Syntax:

<!ATTLIST element-name attribute-name attribute-type #FIXED "value">

Example:

DTD:

<!ATTLIST sender company CDATA #FIXED "Microsoft">

Valid XML:

<sender company="Microsoft" />

Invalid XML:

<sender company="W3Schools" />

Use the #FIXED keyword when you want an attribute to have a fixed value without

allowing the author to change it. If an author includes another value, the XML parser will

return an error.

Enumerated Attribute Values:

Syntax:

<!ATTLIST element-name attribute-name (en1|en2|..) default-value>

Example:

DTD:

<!ATTLIST payment type (check|cash) "cash">

XML example:

<payment type="check" />

or

<payment type="cash" />

Use enumerated attribute values when you want the attribute value to be one of a fixed set

of legal values.

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

25

DTD Examples:

<!DOCTYPE NEWSPAPER [

<!ELEMENT NEWSPAPER (ARTICLE+)>

<!ELEMENT ARTICLE (HEADLINE,BYLINE,LEAD,BODY,NOTES)>

<!ELEMENT HEADLINE (#PCDATA)>

<!ELEMENT BYLINE (#PCDATA)>

<!ELEMENT LEAD (#PCDATA)>

<!ELEMENT BODY (#PCDATA)>

<!ELEMENT NOTES (#PCDATA)>

<!ATTLIST ARTICLE AUTHOR CDATA #REQUIRED>

<!ATTLIST ARTICLE EDITOR CDATA #IMPLIED>

<!ATTLIST ARTICLE DATE CDATA #IMPLIED>

<!ATTLIST ARTICLE EDITION CDATA #IMPLIED>

]>

XML Schema

XML Schema is a XML schema language which is an alternative to DTD. XML Schema is

an XML-based alternative to DTD. Unlike DTD, XML Schemas has support for data types

and namespaces. The XML Schema language, also referred to as XML Schema Definition

(XSD), is used to define XML schema.

An XML Schema:

 defines elements that can appear in a document

 defines attributes that can appear in a document

 defines which elements are child elements

 defines the order of child elements

 defines the number of child elements

 defines whether an element is empty or can include text

 defines data types for elements and attributes

 defines default and fixed values for elements and attributes

XML Schemas are the successors of DTDs. In near future, XML Schemas will be

used in most Web applications as a replacement for DTDs because of the following

reasons;

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

26

 XML Schemas are extensible to future additions

 XML Schemas are richer and more powerful than DTDs

 XML Schemas are written in XML

 XML Schemas support data types

 XML Schemas support namespaces

DTDs are better for text-intensive applications, while schemas have several advantages for

data-intensive workflows. Schemas are written in XML and thusly follow the same rules,

while DTDs are written in a completely different language.

The <schema> Element:

The <schema> element is the root element of every XML Schema.

<?xml version="1.0"?>

<xs:schema>

...

...

</xs:schema>

The <schema> element may contain some attributes. A schema declaration often looks

something like this:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.w3schools.com"

xmlns="http://www.w3schools.com"

elementFormDefault="qualified">

...

...

</xs:schema>

The code fragment xmlns:xs="http://www.w3.org/2001/XMLSchema" indicates that the

elements and data types used in the schema come from the

"http://www.w3.org/2001/XMLSchema" namespace. It also specifies that the elements and

data types that come from the "http://www.w3.org/2001/XMLSchema" namespace should

be prefixed with xs: .

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

27

The code fragment targetNamespace="http://www.w3schools.com" indicates that the

elements defined by this schema (note, to, from, heading, body.) come from the

"http://www.w3schools.com" namespace.

The code fragment xmlns="http://www.w3schools.com" indicates that the default

namespace is "http://www.w3schools.com".

The code fragment elementFormDefault="qualified" indicates that any elements used by

the XML instance document which were declared in this schema must be namespace

qualified.

Referencing a Schema in an XML Document:

XML documents can have a reference to an XML Schema. For example consider the

following “note.xml” file. This file has a reference the “note.xsd” schema.

<?xml version="1.0"?>

<note

xmlns="http://www.w3schools.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.w3schools.com note.xsd">

<to>Tulsi</to>

<from>Giri</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

The code fragment xmlns="http://www.w3schools.com" specifies the default namespace

declaration. This declaration tells the schema-validator that all the elements used in this

XML document are declared in the "http://www.w3schools.com" namespace.

The code fragment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" is the

namespace.

In the code fragment xsi:schemaLocation="http://www.w3schools.com note.xsd", there

are two attribute values. The first value is the namespace to use. The second value is the

location of the XML schema to use for that namespace.

The following example is an XML Schema file called "note.xsd" that defines the elements

of the XML document above ("note.xml"):

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

28

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.w3schools.com"

xmlns="http://www.w3schools.com"

elementFormDefault="qualified">

<xs:element name="note">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

Here, the note element is a complex type because it contains other elements. The other

elements (to, from, heading, body) are simple types because they do not contain other

elements.

XSD Simple Type: Consists of simple elements and attributes.

XSD Simple Elements:

A simple element is an XML element that can contain only text. It cannot contain any

other elements or attributes. The text can be of many different types. It can be one of the

types included in the XML Schema definition (Boolean, string, date, etc.), or it can be a

custom type that you can define yourself. You can also add restrictions (facets) to a data

type in order to limit its content, or you can require the data to match a specific pattern.

The syntax for defining a simple element is:

<xs:element name="xxx" type="yyy"/> , where xxx is the name of the element and yyy is

the data type of the element. XML Schema has a lot of built-in data types. The most

common types are:

 xs:string

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

29

 xs:decimal

 xs:integer

 xs:boolean

 xs:date

 xs:time

For Example;

Consider the XML elements;

<lastname>Bhatta</lastname>

<age>42</age>

<dateborn>1970-03-27</dateborn>

And here are the corresponding simple element definitions:

<xs:element name="lastname" type="xs:string"/>

<xs:element name="age" type="xs:integer"/>

<xs:element name="dateborn" type="xs:date"/>

Default and Fixed Values for Simple Elements:

Simple elements may have a default value OR a fixed value specified. A default value is

automatically assigned to the element when no other value is specified In the following

example the default value is "red":

<xs:element name="color" type="xs:string" default="red"/>

A fixed value is also automatically assigned to the element, and you cannot specify another

value. In the following example the fixed value is "red":

<xs:element name="color" type="xs:string" fixed="red"/>

XSD Attributes:

Simply attributes are associated with the complex elements. If an element has attributes, it

is considered to be of a complex type. Simple elements cannot have attributes. But the

attribute itself is always declared as a simple type. All attributes are declared as simple

types.

The syntax for defining an attribute is:

<xs:attribute name="xxx" type="yyy"/> , where xxx is the name of the attribute and yyy

specifies the data type of the attribute.

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

30

XML Schema has a lot of built-in data types. The most common types are:

 xs:string

 xs:decimal

 xs:integer

 xs:boolean

 xs:date

 xs:time

Example

Here is an XML element with an attribute:

<lastname lang="EN">Smith</lastname>

And here is the corresponding attribute definition:

<xs:attribute name="lang" type="xs:string"/>

Default and Fixed Values for Attributes:

Attributes may have a default value OR a fixed value specified. A default value is

automatically assigned to the attribute when no other value is specified. In the following

example the default value is "EN":

<xs:attribute name="lang" type="xs:string" default="EN"/>

A fixed value is also automatically assigned to the attribute, and you cannot specify

another value.

In the following example the fixed value is "EN":

<xs:attribute name="lang" type="xs:string" fixed="EN"/>

Optional and Required Attributes:

Attributes are optional by default. To specify that the attribute is required, use the "use"

attribute:

<xs:attribute name="lang" type="xs:string" use="required"/>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

31

Restrictions on Content:

When an XML element or attribute has a data type defined, it puts restrictions on the

element's or attribute's content.

If an XML element is of type "xs:date" and contains a string like "Hello World", the

element will not validate.

With XML Schemas, you can also add your own restrictions to your XML elements and

attributes. These restrictions are called facets.

XSD Restrictions/ Facets:

1. Restrictions on Values

The following example defines an element called "age" with a restriction. The value of

age cannot be lower than 0 or greater than 120:

<xs:element name="age">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="120"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

2. Restrictions on a Set of Values

To limit the content of an XML element to a set of acceptable values, we would use the

enumeration constraint. The example below defines an element called "car" with a

restriction. The only acceptable values are: Audi, Golf, BMW:

<xs:element name="car">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Audi"/>

 <xs:enumeration value="Golf"/>

 <xs:enumeration value="BMW"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

 The example above could also have been written like this:

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

32

<xs:element name="car" type="carType"/>

<xs:simpleType name="carType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Audi"/>

 <xs:enumeration value="Golf"/>

 <xs:enumeration value="BMW"/>

 </xs:restriction>

</xs:simpleType>

Note: In this case the type "carType" can be used by other elements because it is not a

part of the "car" element.

3. Restrictions on a Series of Values

To limit the content of an XML element to define a series of numbers or letters that can

be used, we would use the pattern constraint.

The example below defines an element called "letter" with a restriction. The only

acceptable value is ONE of the LOWERCASE letters from a to z:

<xs:element name="letter">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-z]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example defines an element called "initials" with a restriction. The only

acceptable value is THREE of the UPPERCASE letters from a to z:

<xs:element name="initials">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[A-Z][A-Z][A-Z]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example also defines an element called "initials" with a restriction. The only

acceptable value is THREE of the LOWERCASE OR UPPERCASE letters from a to z:

<xs:element name="initials">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-zA-Z][a-zA-Z][a-zA-Z]"/>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

33

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example defines an element called "choice" with a restriction. The only

acceptable value is ONE of the following letters: x, y, OR z:

<xs:element name="choice">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[xyz]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example defines an element called "zipcode" with a restriction. The only

acceptable value is FIVE digits in a sequence, and each digit must be in a range from 0

to 9:

<xs:element name="zipcode">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:pattern value="[0-9][0-9][0-9][0-9][0-9]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

4. Restrictions on Whitespace Characters

To specify how whitespace characters should be handled, we would use the whiteSpace

constraint. This example defines an element called "address" with a restriction. The

whiteSpace constraint is set to "preserve", which means that the XML processor WILL

NOT remove any white space characters:

<xs:element name="address">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="preserve"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

This example also defines an element called "address" with a restriction. The

whiteSpace constraint is set to "replace", which means that the XML processor WILL

REPLACE all white space characters (line feeds, tabs, spaces, and carriage returns)

with spaces:

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

34

<xs:element name="address">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="replace"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

This example also defines an element called "address" with a restriction. The

whiteSpace constraint is set to "collapse", which means that the XML processor WILL

REMOVE all white space characters (line feeds, tabs, spaces, carriage returns are

replaced with spaces, leading and trailing spaces are removed, and multiple spaces are

reduced to a single space):

<xs:element name="address">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="collapse"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

5. Restrictions on Length:

To limit the length of a value in an element, we would use the length, maxLength, and

minLength constraints. This example defines an element called "password" with a

restriction. The value must be exactly eight characters:

<xs:element name="password">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="8"/>

 </xs:restriction>

</xs:simpleType>

</xs:element>

This example defines another element called "password" with a restriction. The value

must be minimum five characters and maximum eight characters:

<xs:element name="password">

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:minLength value="5"/>

 <xs:maxLength value="8"/>

 </xs:restriction>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

35

</xs:simpleType>

</xs:element>

Restrictions for Data types

Constraint Description

Enumeration Defines a list of acceptable values

fractionDigits Specifies the maximum number of decimal places allowed. Must be equal to

or greater than zero

Length Specifies the exact number of characters or list items allowed. Must be

equal to or greater than zero

maxExclusive Specifies the upper bounds for numeric values (the value must be less than

this value)

maxInclusive Specifies the upper bounds for numeric values (the value must be less than

or equal to this value)

maxLength Specifies the maximum number of characters or list items allowed. Must be

equal to or greater than zero

minExclusive Specifies the lower bounds for numeric values (the value must be greater

than this value)

minInclusive Specifies the lower bounds for numeric values (the value must be greater

than or equal to this value)

minLength Specifies the minimum number of characters or list items allowed. Must be

equal to or greater than zero

Pattern Defines the exact sequence of characters that are acceptable

totalDigits Specifies the exact number of digits allowed. Must be greater than zero

whiteSpace Specifies how white space (line feeds, tabs, spaces, and carriage returns) is

handled

XSD Complex Types:

A complex element is an XML element that contains other elements and/or attributes.

There are four kinds of complex elements:

 empty elements

 elements that contain only other elements

 elements that contain only text

 elements that contain both other elements and text

Note: Each of these elements may contain attributes as well!

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

36

Examples of Complex Elements

A complex XML element, "product", which is empty:

<product pid="1345"/>

A complex XML element, "employee", which contains only other elements:

<employee>

 <firstname>Jagdish</firstname>

 <lastname>Bhatta</lastname>

</employee>

A complex XML element, "food", which contains only text:

<food type="dessert">Ice cream</food>

A complex XML element, "description", which contains both elements and text:

<description>

It happened on <date lang="Nepali">03/09/2099</date>

</description>

How to Define a Complex Element

Look at this complex XML element, "employee", which contains only other elements:

<employee>

 <firstname>Jagdishfirstname>

 <lastname>Smith</lastname>

</employee>

We can define a complex element in an XML Schema two different ways:

1. The "employee" element can be declared directly by naming the element, like this:

<xs:element name="employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

37

If you use the method described above, only the "employee" element can use the

specified complex type. Note that the child elements, "firstname" and "lastname", are

surrounded by the <sequence> indicator. This means that the child elements must

appear in the same order as they are declared.

2. The "employee" element can have a type attribute that refers to the name of the

complex type to use:

<xs:element name="employee" type="personinfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

If you use the method described above, several elements can refer to the same complex

type, like this:

<xs:element name="employee" type="personinfo"/>

<xs:element name="student" type="personinfo"/>

<xs:element name="member" type="personinfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

You can also base a complex element on an existing complex element and add some

elements, like this:

<xs:element name="employee" type="fullpersoninfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="fullpersoninfo">

 <xs:complexContent>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

38

 <xs:extension base="personinfo">

 <xs:sequence>

 <xs:element name="address" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

Types of XSD Complex Elements

1. XSD Empty Element

An empty complex element cannot have contents, only attributes. Consider an

empty XML element:

<product prodid="1345" />

The "product" element above has no content at all. To define a type with no

content, we must define a type that allows elements in its content, but we do not

actually declare any elements, like this:

<xs:element name="product">

 <xs:complexType>

 <xs:complexContent>

 <xs:restriction base="xs:integer">

 <xs:attribute name="prodid" type="xs:positiveInteger"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

</xs:element>

In the example above, we define a complex type with a complex content. The

complexContent element signals that we intend to restrict or extend the content

model of a complex type, and the restriction of integer declares one attribute but

does not introduce any element content.

However, it is possible to declare the "product" element more compactly, like this:

<xs:element name="product">

 <xs:complexType>

 <xs:attribute name="prodid" type="xs:positiveInteger"/>

 </xs:complexType>

</xs:element>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

39

Or you can give the complexType element a name, and let the "product" element

have a type attribute that refers to the name of the complexType (if you use this

method, several elements can refer to the same complex type):

<xs:element name="product" type="prodtype"/>

<xs:complexType name="prodtype">

 <xs:attribute name="prodid" type="xs:positiveInteger"/>

</xs:complexType>

2. XSD Elements only

An "elements-only" complex type contains an element that contains only other

elements. Consider an XML element "person", that contains only other elements:

<person>

 <firstname>Jagdish</firstname>

 <lastname>Bhatta</lastname>

</person>

You can define the "person" element in a schema, like this:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Notice the <xs:sequence> tag. It means that the elements defined ("firstname" and

"lastname") must appear in that order inside a "person" element.

Or you can give the complexType element a name, and let the "person" element

have a type attribute that refers to the name of the complexType (if you use this

method, several elements can refer to the same complex type):

<xs:element name="person" type="persontype"/>

<xs:complexType name="persontype">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

40

 </xs:sequence>

</xs:complexType>

3. XSD Text only Elements

A complex text-only element can contain text and attributes. This type contains only

simple content (text and attributes), therefore we add a simpleContent element around

the content. When using simple content, you must define an extension OR a restriction

within the simpleContent element, like this:

<xs:element name="somename">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="basetype">

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

OR

<xs:element name="somename">

 <xs:complexType>

 <xs:simpleContent>

 <xs:restriction base="basetype">

 </xs:restriction>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

Note: You can use the extension/restriction element to expand or to limit the base

simple type for the element.

Here is an example of an XML element, "shoesize", that contains text-only:

<shoesize country="france">35</shoesize>

The following example declares a complexType, "shoesize". The content is defined as

an integer value, and the "shoesize" element also contains an attribute named

"country":

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

41

<xs:element name="shoesize">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:integer">

 <xs:attribute name="country" type="xs:string" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

We could also give the complexType element a name, and let the "shoesize" element

have a type attribute that refers to the name of the complexType (if you use this

method, several elements can refer to the same complex type):

<xs:element name="shoesize" type="shoetype"/>

<xs:complexType name="shoetype">

 <xs:simpleContent>

 <xs:extension base="xs:integer">

 <xs:attribute name="country" type="xs:string" />

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

4. XSD Mixed Content (that contain other element and text)

A mixed complex type element can contain attributes, elements, and text. Consider an

XML element, "ordernote", that contains both text and other elements:

<ordernnote>

 Dear Mr.<name>Jagdish Bhatta</name>.

 Your gift order for the valentine day with order id

<orderid>9999</orderid>

 will be shipped on <shipdate>2012-02-13</shipdate>.

</ordernnote>

The following schema declares the "ordernote" element:

<xs:element name="ordernote">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="orderid" type="xs:positiveInteger"/>

 <xs:element name="shipdate" type="xs:date"/>

 </xs:sequence>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

42

 </xs:complexType>

</xs:element>

Note: To enable character data to appear between the child-elements of "ordernote",

the mixed attribute must be set to "true". The <xs:sequence> tag means that the

elements defined (name, orderid and shipdate) must appear in that order inside a

"ordernote" element.

We could also give the complexType element a name, and let the "ordernote" element

have a type attribute that refers to the name of the complexType (if you use this

method, several elements can refer to the same complex type):

<xs:element name="ordernote" type="ordertype"/>

<xs:complexType name="ordertype" mixed="true">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="orderid" type="xs:positiveInteger"/>

 <xs:element name="shipdate" type="xs:date"/>

 </xs:sequence>

</xs:complexType>

XSD Indicators:

XSD indicators are used to control how elements are to be used in documents with

indicators. There are seven indicators:

1. Order indicators: They contain;

 All

 Choice

 Sequence

2. Occurrence indicators: They include;

 maxOccurs

 minOccurs

3. Group indicators: They contain;

 Group name

 attributeGroup name

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

43

1. Order Indicators: Order indicators are used to define the order of the elements.

All Indicator

The <all> indicator specifies that the child elements can appear in any order, and that

each child element must occur only once:

<xs:element name="person">

 <xs:complexType>

 <xs:all>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:all>

 </xs:complexType>

</xs:element>

Note: When using the <all> indicator you can set the <minOccurs> indicator to 0 or 1

and the <maxOccurs> indicator can only be set to 1 (the <minOccurs> and

<maxOccurs> are described later).

Choice Indicator

The <choice> indicator specifies that either one child element or another can occur:

<xs:element name="person">

 <xs:complexType>

 <xs:choice>

 <xs:element name="employee" type="employee"/>

 <xs:element name="member" type="member"/>

 </xs:choice>

 </xs:complexType>

</xs:element>

Sequence Indicator

The <sequence> indicator specifies that the child elements must appear in a specific

order:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

44

 </xs:complexType>

</xs:element>

2. Occurrence Indicators

 Occurrence indicators are used to define how often an element can occur.

Note: For all "Order" and "Group" indicators (any, all, choice, sequence, group name,

and group reference) the default value for maxOccurs and minOccurs is 1.

maxOccurs Indicator

The <maxOccurs> indicator specifies the maximum number of times an element can

occur:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="full_name" type="xs:string"/>

 <xs:element name="child_name" type="xs:string" maxOccurs="10"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The example above indicates that the "child_name" element can occur a minimum of

one time (the default value for minOccurs is 1) and a maximum of ten times in the

"person" element.

minOccurs Indicator

The <minOccurs> indicator specifies the minimum number of times an element can

occur:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="full_name" type="xs:string"/>

 <xs:element name="child_name" type="xs:string"

 maxOccurs="10" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The example above indicates that the "child_name" element can occur a minimum of

zero times and a maximum of ten times in the "person" element.

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

45

 To allow an element to appear an unlimited number of times, use the

maxOccurs="unbounded" statement:

Consider an example;

An XML file called "Myfamily.xml":

<?xml version="1.0" encoding="ISO-8859-1"?>

<persons xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="family.xsd">

<person>

 <full_name>Anjolina</full_name>

 <child_name>Janet</child_name>

</person>

<person>

 <full_name>Dhritrasta</full_name>

 <child_name>Duryodhan</child_name>

 <child_name>Dushasan</child_name>

 <child_name>Kushashan</child_name>

 <child_name>Sushasan</child_name>

</person>

<person>

 <full_name>Bhismapitamaha</full_name>

</person>

</persons>

The XML file above contains a root element named "persons". Inside this root element

we have defined three "person" elements. Each "person" element must contain a

"full_name" element and it can contain up to five "child_name" elements.

Here is the schema file "family.xsd":

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="persons">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="person" maxOccurs="unbounded">

 <xs:complexType>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

46

 <xs:sequence>

 <xs:element name="full_name" type="xs:string"/>

 <xs:element name="child_name" type="xs:string"

 minOccurs="0" maxOccurs="5"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

3. Group Indicators

Group indicators are used to define related sets of elements.

Element Groups: Element groups are defined with the group declaration, like

this:

<xs:group name="groupname">

...

</xs:group>

You must define an all, choice, or sequence element inside the group declaration.

The following example defines a group named "persongroup", that defines a group

of elements that must occur in an exact sequence:

<xs:group name="persongroup">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 <xs:element name="birthday" type="xs:date"/>

 </xs:sequence>

</xs:group>

After you have defined a group, you can reference it in another definition, like this:

<xs:group name="persongroup">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 <xs:element name="birthday" type="xs:date"/>

 </xs:sequence>

</xs:group>

<xs:element name="person" type="personinfo"/>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

47

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:group ref="persongroup"/>

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

Attribute Groups: Attribute groups are defined with the attributeGroup

declaration, like this:

<xs:attributeGroup name="groupname">

...

</xs:attributeGroup>

The following example defines an attribute group named "personattrgroup":

<xs:attributeGroup name="personattrgroup">

 <xs:attribute name="firstname" type="xs:string"/>

 <xs:attribute name="lastname" type="xs:string"/>

 <xs:attribute name="birthday" type="xs:date"/>

</xs:attributeGroup>

After you have defined an attribute group, you can reference it in another

definition, like this:

<xs:attributeGroup name="personattrgroup">

 <xs:attribute name="firstname" type="xs:string"/>

 <xs:attribute name="lastname" type="xs:string"/>

 <xs:attribute name="birthday" type="xs:date"/>

</xs:attributeGroup>

<xs:element name="person">

 <xs:complexType>

 <xs:attributeGroup ref="personattrgroup"/>

 </xs:complexType>

</xs:element>

XSD The <any> Element :

The <any> element enables us to extend the XML document with elements not specified

by the schema. The following example is a fragment from an XML schema called

"family.xsd". It shows a declaration for the "person" element. By using the <any> element

we can extend (after <lastname>) the content of "person" with any element:

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

48

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 <xs:any minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Now we want to extend the "person" element with a "children" element. In this case we

can do so, even if the author of the schema above never declared any "children" element.

Look at this schema file, called "children.xsd":

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.w3schools.com"

xmlns="http://www.w3schools.com"

elementFormDefault="qualified">

<xs:element name="children">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="childname" type="xs:string"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The XML file below (called "Myfamily.xml"), uses components from two different

schemas; "family.xsd" and "children.xsd":

<?xml version="1.0" encoding="ISO-8859-1"?>

<persons xmlns="http://www.microsoft.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.microsoft.com family.xsd

http://www.w3schools.com children.xsd">

<person>

 <firstname>Ram</firstname>

 <lastname>Bhagwan</lastname>

 <children>

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

49

 <childname>Luv</childname>

 </children>

</person>

<person>

 <firstname>Harry</firstname>

 <lastname>Porter</lastname>

</person>

</persons>

The XML file above is valid because the schema "family.xsd" allows us to extend the

"person" element with an optional element after the "lastname" element.

The <any> and <anyAttribute> elements are used to make EXTENSIBLE documents!

They allow documents to contain additional elements that are not declared in the main

XML schema.

XSD The <anyAttribute> Element :

The <anyAttribute> element enables us to extend the XML document with attributes not

specified by the schema. The following example is a fragment from an XML schema

called "family.xsd". It shows a declaration for the "person" element. By using the

<anyAttribute> element we can add any number of attributes to the "person" element:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

 <xs:anyAttribute/>

 </xs:complexType>

</xs:element>

Now we want to extend the "person" element with a "gender" attribute. In this case we can

do so, even if the author of the schema above never declared any "gender" attribute.

Look at this schema file, called "attribute.xsd":

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.w3schools.com"

xmlns="http://www.w3schools.com"

elementFormDefault="qualified">

Downloaded from CSIT Tutor

Web Technology Chapter- XML

Jagdish Bhatta

50

<xs:attribute name="gender">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="male|female"/>

 </xs:restriction>

 </xs:simpleType>

</xs:attribute>

</xs:schema>

The XML file below (called "Myfamily.xml"), uses components from two different

schemas; "family.xsd" and "attribute.xsd":

<?xml version="1.0" encoding="ISO-8859-1"?>

<persons xmlns="http://www.microsoft.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:SchemaLocation="http://www.microsoft.com family.xsd

http://www.w3schools.com attribute.xsd">

<person gender="female">

 <firstname>Sita</firstname>

 <lastname>Mata</lastname>

</person>

<person gender="male">

 <firstname>Ram</firstname>

 <lastname>Bhagwan</lastname>

</person>

</persons>

The XML file above is valid because the schema "family.xsd" allows us to add an attribute

to the "person" element.

The <any> and <anyAttribute> elements are used to make EXTENSIBLE documents!

They allow documents to contain additional elements that are not declared in the main

XML schema.

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 1

[Unit 4/5: Server side scripting with ASP.NET]

Web Technology (CSC-353)

Jagdish Bhatta

Central Department of Computer Science & Information Technology

Tribhuvan University

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 2

.NET an Overview:

ASP.net and VB.net

ASP.NET stands for Active Server Pages .NET, and VB.NET stands for Visual Basic.NET.

VB.NET, put simply, is a programming language, and ASP.NET is a technology used to render

dynamic web content. An ASP.NET web site is typically made up of code written in either

VB.NET or C# (C Sharp). When creating a web site with VB.NET, you are actually creating an

ASP.NET application using VB.NET. This is different from a traditional Active Server Page

(ASP) page, in that an ASP.NET application is written using fully-featured programming

languages with full functionality, like VB.NET, instead of scripting languages like Visual Basic

Script (VBScript).

Microsoft .net

Microsoft .NET is a package of software that consists of clients, servers, and development tools.

This package includes the Microsoft .NET Framework, development tools such as Visual Studio

2008, a set of server applications such as Microsoft Windows Server 2003 and Microsoft SQL

Server, and client-side applications such as Windows XP and Microsoft Office. Microsoft .NET

Framework includes many other subcomponents that allow software that has been written in

different languages to work together by establishing rules for language independence. Using the

Microsoft .NET Framework as a base, software development toolmakers can create development

tools for different languages such as COBOL or C++. Microsoft itself used the .NET Framework

to create VS, which is a development tool used to create software using the VB or C#

programming languages.

The Microsoft .NET Framework also provides many common functions that previously needed

to be built by the developer. This includes access to the file system, access to the registry, and

easier development when using the Windows Application Programming Interfaces (API) to

access operating system–level functionality. This allows the developer to concentrate more on

business problems, instead of worrying how to access low-level windows functionality.

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 3

The Common Language Runtime

The Microsoft Common Language Runtime (CLR) is one of the components within the .NET

Framework. The CLR provides runtime services, including loading and execution of code.

The CLR essentially takes the language-specific code that was written and translates it

Microsoft Intermediate Language (MSIL) code. The resulting code is the same, no matter

what language the original code was written in. This is what allows code written with VB to

work with code written in C#. This is also the most important aspect of the .NET Framework for

a software development company, because one developer can write code in VB and another

developer can write code with C#, but the application will still work without a problem, allowing

companies to use their existing skill sets. Without this framework and the MSIL, an entire

application would need to be built using the same language. This would require a software

development company to have a full staff of developers that know a specific development

language, such as VB. A single program, written in multiple languages, works mainly because

the framework contains a set of common data types that must be used by all languages building

applications with the .NET Framework. This set of data types is the Common Type System

(CTS), which defines how types are declared, used, and managed. To accommodate the CLR,

some of the data types within languages such as VB needed to be changed so they could work

better with data types from other languages such as C++.

Assemblies

An assembly is the main component of a .NET Framework application and is a collection of

all of the functionality for the particular application. The assembly is created as either a .dll

file for web sites or an .exe file for Windows applications, and it contains all of the MSIL code to

be used by the framework. Without the assembly there is no application. The creation of an

assembly is automatically performed by VS. It is possible to create applications for the .NET

Framework without VS—however, you need to use the various tools that come with the .NET

Framework Software Development Kit (SDK) to create the assemblies and perform other tasks

that are automatically done by VS.

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 4

How Web Servers Execute ASP Files

When a site visitor requests a Web page address, the browser contacts the Web server specified

in the address URL and makes a request for the page by formulating a HTTP request, which is

sent to the Web server. The Web server on receiving the request determines the file type

requested and passes processing to the appropriate handler. ASP.NET files are compiled, if

necessary, into .NET Page classes and then executed, with the results sent to the client’s browser.

Compilation means that on first load ASP.NET applications take longer to display than previous

versions of ASP, but once compiled they are noticeably faster. The browser can request

information from and send information to the server using two HTTP methods, GET and POST.

get

post

 Response

When the server receives this request, it will find the page that was requested using the path

information specified, and the relevant system will process the page. When the response is

complete, it is flushed back out to the user’s browser, usually as HTML but not necessarily, and

Web Server

ASP.net

Request

Response

File System

ADO.net

Database

File System

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 5

the browser renders this page as it arrives as the page on screen. The process of compiling and

delivering ASP.NET pages goes through the following stages:

1. IIS matches the URL in the request against a file on the physical file system (hard disk)

by translating the virtual path (for example, /site/ index.aspx) into a path relative to the

site’s Web root (for example, d:\domains\thisSite\wwwroot\site\index.aspx).

2. Once the file is found, the file extension (.aspx) is matched against a list of known file

types for either sending on to the visitor or for processing.

3. If this is first visit to the page since the file was last changed, the ASP code is compiled

into an assembly using the Common Language Runtime compiler, into MSIL, and then

into machine-specific binary code for execution.

4. The binary code is a .NET class .dll and is stored in a temporary location.

5. Next time the page is requested the server will check to see if the code has changed. If the

code is the same, then the compilation step is skipped and the previously compiled class

code is executed; otherwise, the class is deleted and recompiled from the new source.

6. The compiled code is executed and the request values are interpreted, such as form input

fields or URL parameters.

7. If the developer has used Web forms, then the server can detect what software the visitor

is using and render pages that are tailored to the visitors’ requirements, for example,

returning Netscape specific code, or Wireless Markup Language (WML) code for

mobiles.

8. Any results are delivered back to the visitor’s Web browser.

9. Form elements are converted into client side markup and script, HTML and JavaScript

for Web browsers, and WML and WMLScript for mobiles, for example.

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 6

Request

 Yes

Compilation Errors

 No

 Response

What is Classic ASP and ASP.net?

Microsoft's previous server side scripting technology ASP (Active Server Pages) is now often

called classic ASP. ASP 3.0 was the last version of classic ASP. ASP.NET is the next

generation ASP, but it's not an upgraded version of ASP. ASP.NET is an entirely new

technology for server-side scripting. It was written from the ground up and is not backward

compatible with classic ASP. ASP.NET is a server side scripting technology that enables scripts

(embedded in web pages) to be executed by an Internet server.

 ASP.NET is a Microsoft Technology

 ASP stands for Active Server Pages

 ASP.NET is a program that runs inside IIS

 IIS (Internet Information Services) is Microsoft's Internet server

 IIS comes as a free component with Windows servers

 IIS is also a part of Windows 2000 and XP Professional

Server Finds

File

Execute

Compile

ASP.net

Process

Changed?

Save

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 7

The .NET Framework consists of 3 main parts:

Programming languages:

 C# (Pronounced C sharp)

 Visual Basic (VB .NET)

 J# (Pronounced J sharp)

Server technologies and client technologies:

 ASP .NET (Active Server Pages)

 Windows Forms (Windows desktop solutions)

 Compact Framework (PDA / Mobile solutions)

Development environments:

 Visual Studio .NET (VS .NET)

 Visual Web Developer

Features of ASP.net:

 ASP.NET Controls: ASP.NET contains a large set of HTML controls. Almost all

HTML elements on a page can be defined as ASP.NET control objects that can be

controlled by scripts. ASP.NET also contains a new set of object-oriented input controls,

like programmable list-boxes and validation controls. A new data grid control supports

sorting, data paging, and everything you can expect from a dataset control.
 Event Aware Controls: All ASP.NET objects on a Web page can expose events that can

be processed by ASP.NET code. Load, Click and Change events handled by code makes

coding much simpler and much better organized.

 ASP.NET Components: ASP.NET components are heavily based on XML.

 User Authentication: ASP.NET supports form-based user authentication, cookie

management, and automatic redirecting of unauthorized logins.

 User Accounts and Roles: ASP.NET allows user accounts and roles, to give each user

(with a given role) access to different server code and executables.

 High Scalability: Much has been done with ASP.NET to provide greater scalability.

Server-to-server communication has been greatly enhanced, making it possible to scale

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 8

an application over several servers. One example of this is the ability to run XML

parsers, XSL transformations and even resource hungry session objects on other servers.

 Compiled Code: The first request for an ASP.NET page on the server will compile the

ASP.NET code and keep a cached copy in memory. The result of this is greatly increased

performance.

 Easy Configuration: Configuration of ASP.NET is done with plain text files.

Configuration files can be uploaded or changed while the application is running. No need

to restart the server. No more metabase or registry puzzle.

 Easy Deployment: No more server-restart to deploy or replace compiled code. ASP.NET

simply redirects all new requests to the new code.

 Compatibility: ASP.NET is not fully compatible with earlier versions of ASP, so most

of the old ASP code will need some changes to run under ASP.NET. To overcome this

problem, ASP.NET uses a new file extension ".aspx". This will make ASP.NET

applications able to run side by side with standard ASP applications on the same server.

Creating ASP.NET Application

Simple HTML page that will display "Hello W3Schools" in an Internet browser can be written

like this:

<html>

 <body bgcolor="yellow">

 <center>

 <h2>Hello W3Schools!</h2>

 </center>

 </body>

</html>

The simplest way to convert an HTML page into an ASP.NET page is to copy the HTML file to

a new file with an .aspx extension

<html>

 <body bgcolor="yellow">

 <center>

 <h2>Hello W3Schools!</h2>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 9

 </center>

 </body>

</html>

Fundamentally an ASP.NET page is just the same as an HTML page. An HTML page has the

extension .htm. If a browser requests an HTML page from the server, the server sends the page

to the browser without any modifications. An ASP.NET page has the extension .aspx. If a

browser requests an ASP.NET page, the server processes any executable code in the page, before

the result is sent back to the browser. The ASP.NET page above does not contain any executable

code, so nothing is executed. In the next examples we will add some executable code to the page

to demonstrate the difference between static HTML pages and dynamic ASP pages.

Dynamic Page in Classic ASP and ASP.net

To demonstrate how ASP can display pages with dynamic content, we have added some

executable code (in red) to the previous example:

<html>

<body bgcolor="yellow">

<center>

<h2>Hello W3Schools!</h2>

<p><%Response.Write(now())%></p>

</center>

</body>

</html>

The code inside the <% --%> tags is executed on the server. Response.Write is ASP code for

writing something to the HTML output stream. Now() is a function returning the servers current

date and time. This same code can also be used as ASP.NET page. The code above illustrates a

limitation in Classic ASP: The code block has to be placed where you want the output to appear.

With Classic ASP it is impossible to separate executable code from the HTML itself. This makes

the page difficult to read, and difficult to maintain.

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 10

ASP.NET - Server Controls

ASP.NET has solved the "spaghetti-code" problem described above with server controls. Server

controls are tags that are understood by the server. There are three kinds of server controls:

 HTML Server Controls - Traditional HTML tags

 Web Server Controls - New ASP.NET tags

 Validation Server Controls - For input validation

ASP.NET - HTML Server Controls

HTML server controls are HTML tags understood by the server. HTML elements in ASP.NET

files are, by default, treated as text. To make these elements programmable, add a runat="server"

attribute to the HTML element. This attribute indicates that the element should be treated as a

server control. The id attribute is added to identify the server control. The id reference can be

used to manipulate the server control at run time. All HTML server controls must be within a

<form> tag with the runat="server" attribute. The runat="server" attribute indicates that the form

should be processed on the server. It also indicates that the enclosed controls can be accessed by

server scripts.

In the following example we declare an HtmlAnchor server control in an .aspx file. Then we

manipulate the HRef attribute of the HtmlAnchor control in an event handler (an event handler is

a subroutine that executes code for a given event). The Page_Load event is one of many events

that ASP.NET understands.

<script runat="server">

Sub Page_Load

link1.HRef="http://www.w3schools.com"

End Sub

</script>

<html>

<body>

<form runat="server">

Visit W3Schools!

</form>

</body>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 11

</html>

The executable code itself has been moved outside the HTML.

ASP.NET - Web Server Controls

Web server controls are special ASP.NET tags understood by the server. Like HTML server

controls, Web server controls are also created on the server and they require a runat="server"

attribute to work. However, Web server controls do not necessarily map to any existing HTML

elements and they may represent more complex elements. The syntax for creating a Web server

control is:

<asp:control_name id="some_id" runat="server" />

In the following example we declare a Button server control in an .aspx file. Then we create an

event handler for the Click event which changes the text on the button:

<script runat="server">

Sub submit(Source As Object, e As EventArgs)

button1.Text="You clicked me!"

End Sub

</script>

<html>

<body>

<form runat="server">

<asp:Button id="button1" Text="Click me!" runat="server" OnClick="submit"/>

</form>

</body>

</html>

ASP.NET - Validation Server Controls

Validation server controls are used to validate user-input. If the user-input does not pass

validation, it will display an error message to the user. Each validation control performs a

specific type of validation (like validating against a specific value or a range of values). By

default, page validation is performed when a Button, ImageButton, or LinkButton control is

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 12

clicked. You can prevent validation when a button control is clicked by setting the

CausesValidation property to false. The syntax for creating a Validation server control is:

<asp:control_name id="some_id" runat="server" />

In the following example we declare one TextBox control, one Button control, and one

RangeValidator control in an .aspx file. If validation fails, the text "The value must be from 1 to

100!" will be displayed in the RangeValidator control:

<html>

<body>

<form runat="server">

<p>Enter a number from 1 to 100:

<asp:TextBox id="tbox1" runat="server" />

<asp:Button Text="Submit" runat="server" />

</p>

<p>

<asp:RangeValidator ControlToValidate="tbox1" MinimumValue="1"

MaximumValue="100" Type="Integer" Text="The value must be from 1 to 100!"

runat="server" />

</p>

</form>

</body>

</html>

ASP.NET Web Forms

All server controls must appear within a <form> tag, and the <form> tag must contain the

runat="server" attribute. The runat="server" attribute indicates that the form should be processed

on the server. It also indicates that the enclosed controls can be accessed by server scripts:

<form runat="server">

...HTML + server controls

</form>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 13

The form is always submitted to the page itself. If you specify an action attribute, it is ignored. If

you omit the method attribute, it will be set to method="post" by default. Also, if you do not

specify the name and id attributes, they are automatically assigned by ASP.NET. An .aspx page

can only contain ONE <form runat="server"> control!. If you select view source in an .aspx page

containing a form with no name, method, action, or id attribute specified, you will see that

ASP.NET has added these attributes to the form. It looks something like this:

<form name="_ctl0" method="post" action="page.aspx" id="_ctl0">

...some code

</form>

Submitting a Form

A form is most often submitted by clicking on a button. The Button server control in ASP.NET

has the following format:

<asp:Button id="id" text="label" OnClick="sub" runat="server" />

The id attribute defines a unique name for the button and the text attribute assigns a label to the

button. The onClick event handler specifies a named subroutine to execute. In the following

example we declare a Button control in an .aspx file. A button click runs a subroutine which

changes the text on the button:

Maintaining the ViewState

When a form is submitted in classic ASP, all form values are cleared. Suppose you have

submitted a form with a lot of information and the server comes back with an error. You will

have to go back to the form and correct the information. You click the back button, and what

happens.......ALL form values are CLEARED, and you will have to start all over again! The site

did not maintain your ViewState. When a form is submitted in ASP .NET, the form reappears in

the browser window together with all form values. How come? This is because ASP .NET

maintains your ViewState. The ViewState indicates the status of the page when submitted to the

server. The status is defined through a hidden field placed on each page with a <form

runat="server"> control. The source could look something like this:

<form name="_ctl0" method="post" action="page.aspx" id="_ctl0">

<input type="hidden" name="__VIEWSTATE"

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 14

value="dDwtNTI0ODU5MDE1Ozs+ZBCF2ryjMpeVgUrY2eTj79HNl4Q=" />

.....some code

</form>

Maintaining the ViewState is the default setting for ASP.NET Web Forms. If you want to NOT

maintain the ViewState, include the directive <%@ Page EnableViewState="false" %> at the top

of an .aspx page or add the attribute EnableViewState="false" to any control. Look at the

following .aspx file. It demonstrates the "old" way to do it. When you click on the submit button,

the form value will disappear:

<html>

<body>

<form action="demo_classicasp.aspx" method="post">

Your name: <input type="text" name="fname" size="20">

<input type="submit" value="Submit">

</form>

<%

dim fname

fname=Request.Form("fname")

If fname<>"" Then

Response.Write("Hello " & fname & "!")

End If

%>

</body>

</html>

Here is the new ASP .NET way. When you click on the submit button, the form value will NOT

disappear:

<script runat="server">

Sub submit(sender As Object, e As EventArgs)

lbl1.Text="Hello " & txt1.Text & "!"

End Sub

</script>

<html>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 15

<body>

<form runat="server">

Your name: <asp:TextBox id="txt1" runat="server" />

<asp:Button OnClick="submit" Text="Submit" runat="server" />

<p><asp:Label id="lbl1" runat="server" /></p>

</form>

</body>

</html>

The TextBox Control

The TextBox control is used to create a text box where the user can input text. The TextBox

control's attributes and properties are listed in our web controls reference page. The example

below demonstrates some of the attributes you may use with the TextBox control:

<html>

<body>

<form runat="server">

A basic TextBox:

<asp:TextBox id="tb1" runat="server" />

A password TextBox:

<asp:TextBox id="tb2" TextMode="password" runat="server" />

A TextBox with text:

<asp:TextBox id="tb4" Text="Hello World!" runat="server" />

A multiline TextBox:

<asp:TextBox id="tb3" TextMode="multiline" runat="server" />

A TextBox with height:

<asp:TextBox id="tb6" rows="5" TextMode="multiline"

runat="server" />

Downloaded from CSIT Tutor

http://www.w3schools.com/aspnet/aspnet_refwebcontrols.asp

Web Technology Chapter- Server Side Scripting with ASP.NET

 16

A TextBox with width:

<asp:TextBox id="tb5" columns="30" runat="server" />

</form>

</body>

</html>

Add a Script

The contents and settings of a TextBox control may be changed by server scripts when a form is

submitted. A form can be submitted by clicking on a button or when a user changes the value in

the TextBox control. In the following example we declare one TextBox control, one Button

control, and one Label control in an .aspx file. When the submit button is triggered, the submit

subroutine is executed. The submit subroutine writes a text to the Label control:

<script runat="server">

Sub submit(sender As Object, e As EventArgs)

lbl1.Text="Your name is " & txt1.Text

End Sub

</script>

<html>

<body>

<form runat="server">

Enter your name:

<asp:TextBox id="txt1" runat="server" />

<asp:Button OnClick="submit" Text="Submit" runat="server" />

<p><asp:Label id="lbl1" runat="server" /></p>

</form>

</body>

</html>

In the following example we declare one TextBox control and one Label control in an .aspx file.

When you change the value in the TextBox and either click outside the TextBox or press the Tab

key, the change subroutine is executed. The submit subroutine writes a text to the Label control:

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 17

<script runat="server">

Sub change(sender As Object, e As EventArgs)

lbl1.Text="You changed text to " & txt1.Text

End Sub

</script>

<html>

<body>

<form runat="server">

Enter your name:

<asp:TextBox id="txt1" runat="server"

text="Hello World!"

ontextchanged="change" autopostback="true"/>

<p><asp:Label id="lbl1" runat="server" /></p>

</form>

</body>

</html>

The Button Control

The Button control is used to display a push button. The push button may be a submit button or a

command button. By default, this control is a submit button. A submit button does not have a

command name and it posts the page back to the server when it is clicked. It is possible to write

an event handler to control the actions performed when the submit button is clicked. A command

button has a command name and allows you to create multiple Button controls on a page. It is

possible to write an event handler to control the actions performed when the command button is

clicked. The example below demonstrates a simple Button control:

<html>

<body>

<form runat="server">

<asp:Button id="b1" Text="Submit" runat="server" />

</form>

</body>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 18

</html>

Data Binding

The following controls are list controls which support data binding:

 asp:RadioButtonList

 asp:CheckBoxList

 asp:DropDownList

 asp:Listbox

The selectable items in each of the above controls are usually defined by one or more

asp:ListItem controls, like this:

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="countrylist" runat="server">

<asp:ListItem value="N" text="Norway" />

<asp:ListItem value="S" text="Sweden" />

<asp:ListItem value="F" text="France" />

<asp:ListItem value="I" text="Italy" />

</asp:RadioButtonList>

</form>

</body>

</html>

However, with data binding we may use a separate source, like a database, an XML file, or a

script to fill the list with selectable items. By using an imported source, the data is separated

from the HTML, and any changes to the items are made in the separate data source.

The ArrayList object is a collection of items containing a single data value. Items are added to

the ArrayList with the Add() method. The following code creates a new ArrayList object named

mycountries and four items are added:

<script runat="server">

Sub Page_Load

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 19

if Not Page.IsPostBack then

 dim mycountries=New ArrayList

 mycountries.Add("Norway")

 mycountries.Add("Sweden")

 mycountries.Add("France")

 mycountries.Add("Italy")

end if

end sub

</script>

By default, an ArrayList object contains 16 entries. An ArrayList can be sized to its final size

with the TrimToSize() method:

<script runat="server">

Sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New ArrayList

 mycountries.Add("Norway")

 mycountries.Add("Sweden")

 mycountries.Add("France")

 mycountries.Add("Italy")

 mycountries.TrimToSize()

end if

end sub

</script>

An ArrayList can also be sorted alphabetically or numerically with the Sort() method:

<script runat="server">

Sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New ArrayList

 mycountries.Add("Norway")

 mycountries.Add("Sweden")

 mycountries.Add("France")

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 20

 mycountries.Add("Italy")

 mycountries.TrimToSize()

 mycountries.Sort()

end if

end sub

</script>

To sort in reverse order, apply the Reverse() method after the Sort() method:

script runat="server">

Sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New ArrayList

 mycountries.Add("Norway")

 mycountries.Add("Sweden")

 mycountries.Add("France")

 mycountries.Add("Italy")

 mycountries.TrimToSize()

 mycountries.Sort()

 mycountries.Reverse()

end if

end sub

</script>

An ArrayList object may automatically generate the text and values to the following controls:

 asp:RadioButtonList

 asp:CheckBoxList

 asp:DropDownList

 asp:Listbox

To bind data to a RadioButtonList control, first create a RadioButtonList control (without any

asp:ListItem elements) in an .aspx page:

<script runat="server">

Sub Page_Load

if Not Page.IsPostBack then

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 21

 dim mycountries=New ArrayList

 mycountries.Add("Norway")

 mycountries.Add("Sweden")

 mycountries.Add("France")

 mycountries.Add("Italy")

 mycountries.TrimToSize()

 mycountries.Sort()

 rb.DataSource=mycountries

 rb.DataBind()

end if

end sub

</script>

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server" />

</form>

</body>

</html>

The DataSource property of the RadioButtonList control is set to the ArrayList and it defines the

data source of the RadioButtonList control. The DataBind() method of the RadioButtonList

control binds the data source with the RadioButtonList control. The data values are used as both

the Text and Value properties for the control.

Creating a HashTable

The Hashtable object contains items in key/value pairs. The keys are used as indexes, and very

quick searches can be made for values by searching through their keys. Items are added to the

Hashtable with the Add() method. The following code creates a Hashtable named mycountries

and four elements are added:

<script runat="server">

Sub Page_Load

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 22

if Not Page.IsPostBack then

 dim mycountries=New Hashtable

 mycountries.Add("N","Norway")

 mycountries.Add("S","Sweden")

 mycountries.Add("F","France")

 mycountries.Add("I","Italy")

end if

end sub

</script>

A Hashtable object may automatically generate the text and values to the following controls:

 asp:RadioButtonList

 asp:CheckBoxList

 asp:DropDownList

 asp:Listbox

To bind data to a RadioButtonList control, first create a RadioButtonList control (without any

asp:ListItem elements) in an .aspx page:

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" />

</form>

</body>

</html>

Then add the script that builds the list:

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New Hashtable

 mycountries.Add("N", "Norway")

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 23

 mycountries.Add("S", "Sweden")

 mycountries.Add("F", "France")

 mycountries.Add("I", "Italy")

 rb.DataSource=mycountries

 rb.DataValueField="Key"

 rb.DataTextField="Value"

 rb.DataBind()

end if

end sub

</script>

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" />

</form>

</body>

</html>

Then we add a sub routine to be executed when the user clicks on an item in the RadioButtonList

control. When a radio button is clicked, a text will appear in a label:

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New Hashtable

 mycountries.Add("N", "Norway")

 mycountries.Add("S", "Sweden")

 mycountries.Add("F", "France")

 mycountries.Add("I", "Italy")

 rb.DataSource=mycountries

 rb.DataValueField="Key"

 rb.DataTextField="Value"

 rb.DataBind()

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 24

end if

end sub

sub displayMessage(s as Object,e As EventArgs)

lbl1.text="Your favorite country is: " & rb.SelectedItem.Text

end sub

</script>

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True"

onSelectedIndexChanged="displayMessage" />

<p><asp:label id="lbl1" runat="server" /></p>

</form>

</body>

</html>

You cannot choose the sort order of the items added to the Hashtable. To sort items

alphabetically or numerically, use the SortedList object.

The SortedList Object

The SortedList object contains items in key/value pairs. A SortedList object automatically sort

the items in alphabetic or numeric order. Items are added to the SortedList with the Add()

method. A SortedList can be sized to its final size with the TrimToSize() method. The following

code creates a SortedList named mycountries and four elements are added:

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New SortedList

 mycountries.Add("N","Norway")

 mycountries.Add("S","Sweden")

 mycountries.Add("F","France")

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 25

 mycountries.Add("I","Italy")

end if

end sub

</script>

A SortedList object may automatically generate the text and values to the following controls:

 asp:RadioButtonList

 asp:CheckBoxList

 asp:DropDownList

 asp:Listbox

To bind data to a RadioButtonList control, first create a RadioButtonList control (without any

asp:ListItem elements) in an .aspx page:

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" />

</form>

</body>

</html>

Then add the script that builds the list:

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New SortedList

 mycountries.Add("N","Norway")

 mycountries.Add("S","Sweden")

 mycountries.Add("F","France")

 mycountries.Add("I","Italy")

 rb.DataSource=mycountries

 rb.DataValueField="Key"

 rb.DataTextField="Value"

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 26

 rb.DataBind()

end if

end sub

</script>

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" />

</form>

</body>

</html>

Then we add a sub routine to be executed when the user clicks on an item in the RadioButtonList

control. When a radio button is clicked, a text will appear in a label:

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New SortedList

 mycountries.Add("N","Norway")

 mycountries.Add("S","Sweden")

 mycountries.Add("F","France")

 mycountries.Add("I","Italy")

 rb.DataSource=mycountries

 rb.DataValueField="Key"

 rb.DataTextField="Value"

 rb.DataBind()

end if

end sub

sub displayMessage(s as Object,e As EventArgs)

lbl1.text="Your favorite country is: " & rb.SelectedItem.Text

end sub

</script>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 27

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server"

AutoPostBack="True" onSelectedIndexChanged="displayMessage" />

<p><asp:label id="lbl1" runat="server" /></p>

</form>

</body>

</html>

ASP .NET - XML Files

Here is an XML file named "countries.xml":

<?xml version="1.0" encoding="ISO-8859-1"?>

<countries>

<country>

 <text>Norway</text>

 <value>N</value>

</country>

<country>

 <text>Sweden</text>

 <value>S</value>

</country>

<country>

 <text>France</text>

 <value>F</value>

</country>

<country>

 <text>Italy</text>

 <value>I</value>

</country>

</countries>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 28

Bind a DataSet to a List Control

First, import the "System.Data" namespace. We need this namespace to work with DataSet

objects. Include the following directive at the top of an .aspx page:

<%@ Import Namespace="System.Data" %>

Next, create a DataSet for the XML file and load the XML file into the DataSet when the page is

first loaded:

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New DataSet

 mycountries.ReadXml(MapPath("countries.xml"))

end if

end sub

To bind the DataSet to a RadioButtonList control, first create a RadioButtonList control (without

any asp:ListItem elements) in an .aspx page:

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" />

</form>

</body>

</html>

Then add the script that builds the XML DataSet:

<%@ Import Namespace="System.Data" %>

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New DataSet

 mycountries.ReadXml(MapPath("countries.xml"))

 rb.DataSource=mycountries

 rb.DataValueField="value"

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 29

 rb.DataTextField="text"

 rb.DataBind()

end if

end sub

</script>

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server"

AutoPostBack="True" onSelectedIndexChanged="displayMessage" />

</form>

</body>

</html>

Then we add a sub routine to be executed when the user clicks on an item in the

RadioButtonList control. When a radio button is clicked, a text will appear in a label:

<%@ Import Namespace="System.Data" %>

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycountries=New DataSet

 mycountries.ReadXml(MapPath("countries.xml"))

 rb.DataSource=mycountries

 rb.DataValueField="value"

 rb.DataTextField="text"

 rb.DataBind()

end if

end sub

sub displayMessage(s as Object,e As EventArgs)

lbl1.text="Your favorite country is: " & rb.SelectedItem.Text

end sub

</script>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 30

<html>

<body>

<form runat="server">

<asp:RadioButtonList id="rb" runat="server"

AutoPostBack="True" onSelectedIndexChanged="displayMessage" />

<p><asp:label id="lbl1" runat="server" /></p>

</form>

</body>

</html>

The Repeater Control

The Repeater control is used to display a repeated list of items that are bound to the control. The

Repeater control may be bound to a database table, an XML file, or another list of items. Here

we will show how to bind an XML file to a Repeater control.

We will use the following XML file in our examples ("cdcatalog.xml"):

<?xml version="1.0" encoding="ISO-8859-1"?>

<catalog>

<cd>

 <title>Empire Burlesque</title>

 <artist>Bob Dylan</artist>

 <country>USA</country>

 <company>Columbia</company>

 <price>10.90</price>

 <year>1985</year>

</cd>

<cd>

 <title>Hide your heart</title>

 <artist>Bonnie Tyler</artist>

 <country>UK</country>

 <company>CBS Records</company>

 <price>9.90</price>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 31

 <year>1988</year>

</cd>

<cd>

 <title>Greatest Hits</title>

 <artist>Dolly Parton</artist>

 <country>USA</country>

 <company>RCA</company>

 <price>9.90</price>

 <year>1982</year>

</cd>

<cd>

 <title>Still got the blues</title>

 <artist>Gary Moore</artist>

 <country>UK</country>

 <company>Virgin records</company>

 <price>10.20</price>

 <year>1990</year>

</cd>

<cd>

 <title>Eros</title>

 <artist>Eros Ramazzotti</artist>

 <country>EU</country>

 <company>BMG</company>

 <price>9.90</price>

 <year>1997</year>

</cd>

</catalog>

Next, create a DataSet for the XML file and load the XML file into the DataSet when the page is

first loaded:

<script runat="server">

sub Page_Load

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 32

if Not Page.IsPostBack then

 dim mycdcatalog=New DataSet

 mycdcatalog.ReadXml(MapPath("cdcatalog.xml"))

end if

end sub

Then we create a Repeater control in an .aspx page. The contents of the <HeaderTemplate>

element are rendered first and only once within the output, then the contents of the

<ItemTemplate> element are repeated for each "record" in the DataSet, and last, the contents of

the <FooterTemplate> element are rendered once within the output:

<html>

<body>

<form runat="server">

<asp:Repeater id="cdcatalog" runat="server">

<HeaderTemplate>

...

</HeaderTemplate>

<ItemTemplate>

...

</ItemTemplate>

<FooterTemplate>

...

</FooterTemplate>

</asp:Repeater>

</form>

</body>

</html>

Then we add the script that creates the DataSet and binds the mycdcatalog DataSet to the

Repeater control. We also fill the Repeater control with HTML tags and bind the data items to

the cells in the<ItemTemplate> section with the <%#Container.DataItem("fieldname")%>

method:

Example

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 33

<%@ Import Namespace="System.Data" %>

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycdcatalog=New DataSet

 mycdcatalog.ReadXml(MapPath("cdcatalog.xml"))

 cdcatalog.DataSource=mycdcatalog

 cdcatalog.DataBind()

end if

end sub

</script>

<html>

<body>

<form runat="server">

<asp:Repeater id="cdcatalog" runat="server">

<HeaderTemplate>

<table border="1" width="100%">

<tr>

<th>Title</th>

<th>Artist</th>

<th>Country</th>

<th>Company</th>

<th>Price</th>

<th>Year</th>

</tr>

</HeaderTemplate>

<ItemTemplate>

<tr>

<td><%#Container.DataItem("title")%></td>

<td><%#Container.DataItem("artist")%></td>

<td><%#Container.DataItem("country")%></td>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 34

<td><%#Container.DataItem("company")%></td>

<td><%#Container.DataItem("price")%></td>

<td><%#Container.DataItem("year")%></td>

</tr>

</ItemTemplate>

<FooterTemplate>

</table>

</FooterTemplate>

</asp:Repeater>

</form>

</body>

</html>

Output

Using the <AlternatingItemTemplate>

You can add an <AlternatingItemTemplate> element after the <ItemTemplate> element to

describe the appearance of alternating rows of output. In the following example each other row

in the table will be displayed in a light grey color:

<%@ Import Namespace="System.Data" %>

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycdcatalog=New DataSet

 mycdcatalog.ReadXml(MapPath("cdcatalog.xml"))

 cdcatalog.DataSource=mycdcatalog

 cdcatalog.DataBind()

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 35

end if

end sub

</script>

<html>

<body>

<form runat="server">

<asp:Repeater id="cdcatalog" runat="server">

<HeaderTemplate>

<table border="1" width="100%">

<tr>

<th>Title</th>

<th>Artist</th>

<th>Country</th>

<th>Company</th>

<th>Price</th>

<th>Year</th>

</tr>

</HeaderTemplate>

<ItemTemplate>

<tr>

<td><%#Container.DataItem("title")%></td>

<td><%#Container.DataItem("artist")%></td>

<td><%#Container.DataItem("country")%></td>

<td><%#Container.DataItem("company")%></td>

<td><%#Container.DataItem("price")%></td>

<td><%#Container.DataItem("year")%></td>

</tr>

</ItemTemplate>

<AlternatingItemTemplate>

<tr bgcolor="#e8e8e8">

<td><%#Container.DataItem("title")%></td>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 36

<td><%#Container.DataItem("artist")%></td>

<td><%#Container.DataItem("country")%></td>

<td><%#Container.DataItem("company")%></td>

<td><%#Container.DataItem("price")%></td>

<td><%#Container.DataItem("year")%></td>

</tr>

</AlternatingItemTemplate>

<FooterTemplate>

</table>

</FooterTemplate>

</asp:Repeater>

</form>

</body>

</html>

Output

Using the <SeparatorTemplate>

The <SeparatorTemplate> element can be used to describe a separator between each record. The

following example inserts a horizontal line between each table row:

<%@ Import Namespace="System.Data" %>

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycdcatalog=New DataSet

 mycdcatalog.ReadXml(MapPath("cdcatalog.xml"))

 cdcatalog.DataSource=mycdcatalog

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 37

 cdcatalog.DataBind()

end if

end sub

</script>

<html>

<body>

<form runat="server">

<asp:Repeater id="cdcatalog" runat="server">

<HeaderTemplate>

<table border="0" width="100%">

<tr>

<th>Title</th>

<th>Artist</th>

<th>Country</th>

<th>Company</th>

<th>Price</th>

<th>Year</th>

</tr>

</HeaderTemplate>

<ItemTemplate>

<tr>

<td><%#Container.DataItem("title")%></td>

<td><%#Container.DataItem("artist")%></td>

<td><%#Container.DataItem("country")%></td>

<td><%#Container.DataItem("company")%></td>

<td><%#Container.DataItem("price")%></td>

<td><%#Container.DataItem("year")%></td>

</tr>

</ItemTemplate>

<SeparatorTemplate>

<tr>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 38

<td colspan="6"><hr /></td>

</tr>

</SeparatorTemplate>

<FooterTemplate>

</table>

</FooterTemplate>

</asp:Repeater>

</form>

</body> </html>

Output

ASP.NET - The DataList Control

The DataList control is, like the Repeater control, used to display a repeated list of items that are

bound to the control. However, the DataList control adds a table around the data items by

default. Bind a DataSet to a DataList Control The DataList control is, like the Repeater control,

used to display a repeated list of items that are bound to the control. However, the DataList

control adds a table around the data items by default. The DataList control may be bound to a

database table, an XML file, or another list of items. Here we will show how to bind an XML file

to a DataList control.

Next, create a DataSet for the XML file and load the XML file into the DataSet when the page is

first loaded:

<script runat="server">

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 39

sub Page_Load

if Not Page.IsPostBack then

 dim mycdcatalog=New DataSet

 mycdcatalog.ReadXml(MapPath("cdcatalog.xml"))

end if

end sub

Then we create a DataList in an .aspx page. The contents of the <HeaderTemplate> element are

rendered first and only once within the output, then the contents of the <ItemTemplate> element

are repeated for each "record" in the DataSet, and last, the contents of the <FooterTemplate>

element are rendered once within the output:

Then we add the script that creates the DataSet and binds the mycdcatalog DataSet to the

DataList control. We also fill the DataList control with a <HeaderTemplate> that contains the

header of the table, an <ItemTemplate> that contains the data items to display, and a

<FooterTemplate> that contains a text. Note that the gridlines attribute of the DataList is set to

"both" to display table borders:

<%@ Import Namespace="System.Data" %>

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycdcatalog=New DataSet

 mycdcatalog.ReadXml(MapPath("cdcatalog.xml"))

 cdcatalog.DataSource=mycdcatalog

 cdcatalog.DataBind()

end if

end sub

</script>

<html>

<body>

<form runat="server">

<asp:DataList id="cdcatalog" gridlines="both" runat="server">

<HeaderTemplate>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 40

My CD Catalog

</HeaderTemplate>

<ItemTemplate>

"<%#Container.DataItem("title")%>" of

<%#Container.DataItem("artist")%> -

$<%#Container.DataItem("price")%>

</ItemTemplate>

<FooterTemplate>

Copyright Hege Refsnes

</FooterTemplate>

</asp:DataList>

</form>

</body>

</html>

You can also add styles to the DataList control to make the output more fancy:

Example

<%@ Import Namespace="System.Data" %>

<script runat="server">

sub Page_Load

if Not Page.IsPostBack then

 dim mycdcatalog=New DataSet

 mycdcatalog.ReadXml(MapPath("cdcatalog.xml"))

 cdcatalog.DataSource=mycdcatalog

 cdcatalog.DataBind()

end if

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 41

end sub

</script>

<html>

<body>

<form runat="server">

<asp:DataList id="cdcatalog" runat="server" cellpadding="2" cellspacing="2"

borderstyle="inset" backcolor="#e8e8e8" width="100%" headerstyle-font-name="Verdana"

headerstyle-font-size="12pt" headerstyle-horizontalalign="center" headerstyle-font-bold="true"

itemstyle-backcolor="#778899" itemstyle-forecolor="#ffffff" footerstyle-font-size="9pt"

footerstyle-font-italic="true">

<HeaderTemplate>

My CD Catalog

</HeaderTemplate>

<ItemTemplate>

"<%#Container.DataItem("title")%>" of

<%#Container.DataItem("artist")%> -

$<%#Container.DataItem("price")%>

</ItemTemplate>

<FooterTemplate>

Copyright Hege Refsnes

</FooterTemplate>

</asp:DataList>

</form>

</body>

</html>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 42

Using SQL Server with ASP.NET

Microsoft SQL Server is based on the client/server architecture, in which data is stored on a

centralized computer called a server. Other computers, called clients, can access the data stored

on the server through a network. The client/server architecture prevents data inconsistency. You

can access data stored on a SQL server through Web Forms. To do so, you can create Web

applications that have data access controls. These data access Web controls present the data in a

consistent manner irrespective of the actual source, such as Microsoft SQL Server or MS Access.

Therefore, while creating a Web application, you do not need to worry about the format of the

data. However, before you can access or manipulate data from a SQL server, you need to

perform the following steps in the specified sequence:

1. Establish a connection with the SQL Server.

2. Write the actual command to access or manipulate data.

3. Create a result set of the data from the data source with which the application can work.

This result set is called the data set and is disconnected from the actual source. The

application accesses and updates data in the data set, which is later reconciled with the

actual data source.

Selecting Data from Table

To achieve this functionality, you first need to import two namespaces, System.Data and

System.Data.SqlClient, into your Web Forms page. The syntax is given as follows:

<%@ Import Namespace="System.Data.OleDb" %>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 43

We need this namespace to work with Microsoft Access and other OLE DB database providers.

We will create the connection to the database in the Page_Load subroutine. We create a dbconn

variable as a new OleDbConnection class with a connection string which identifies the OLE DB

provider and the location of the database. Then we open the database connection:

<%@ Import Namespace="System.Data.OleDb" %>

<script runat="server">

sub Page_Load

dim dbconn

dbconn=New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;//;;;;data source="

& server.mappath("northwind.mdb"))

dbconn.Open()

end sub

</script>

The connection string must be a continuous string without a line break. To specify the records to

retrieve from the database, we will create a dbcomm variable as a new OleDbCommand class.

The OleDbCommand class is for issuing SQL queries against database tables:

<%@ Import Namespace="System.Data.OleDb" %>

<script runat="server">

sub Page_Load

dim dbconn,sql,dbcomm

dbconn=New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;

data source=" & server.mappath("northwind.mdb"))

dbconn.Open()

sql="SELECT * FROM customers"

dbcomm=New OleDbCommand(sql,dbconn)

end sub

</script>

The OleDbDataReader class is used to read a stream of records from a data source. A

DataReader is created by calling the ExecuteReader method of the OleDbCommand object:

<%@ Import Namespace="System.Data.OleDb" %>

<script runat="server">

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 44

sub Page_Load

dim dbconn,sql,dbcomm,dbread

dbconn=New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;

data source=" & server.mappath("Bank.mdb"))

dbconn.Open()

sql="SELECT * FROM customers"

dbcomm=New OleDbCommand(sql,dbconn)

dbread=dbcomm.ExecuteReader()

end sub

</script>

Then we bind the DataReader to a Repeater control:

<%@ Import Namespace="System.Data.OleDb" %>

<script runat="server">

sub Page_Load

dim dbconn,sql,dbcomm,dbread

 dbconn = New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data

source=" & Server.MapPath("Bank.mdb"))

dbconn.Open()

 sql = "SELECT * From customer where Address='Mnr'"

dbcomm=New OleDbCommand(sql,dbconn)

dbread=dbcomm.ExecuteReader()

customers.DataSource=dbread

customers.DataBind()

dbread.Close()

dbconn.Close()

end sub

</script>

<html>

<body>

<form id="Form1" runat="server">

<asp:Repeater id="customers" runat="server">

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 45

<HeaderTemplate>

<table border="1" width="100%">

<tr>

<th>Customer ID</th>

<th>Customer Name</th>

<th>Address</th>

<th>Age</th>

<th>Mobile</th>

<th>Email</th>

</tr>

</HeaderTemplate>

<ItemTemplate>

<tr>

<td><%#Container.DataItem("Cid")%></td>

<td><%#Container.DataItem("CName")%></td>

<td><%#Container.DataItem("Address")%></td>

<td><%#Container.DataItem("Age")%></td>

<td><%#Container.DataItem("Mobile")%></td>

<td><%#Container.DataItem("Email")%></td>

</tr>

</ItemTemplate>

<FooterTemplate>

</table>

</FooterTemplate>

</asp:Repeater>

</form>

</body>

</html>

Creating Table

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 46

<%@ Import Namespace="System.Data.OleDb" %>

<script runat="server">

sub Page_Load

 Dim dbconn, sql, dbcomm

 dbconn = New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data

source=" & Server.MapPath("Bank.mdb"))

 dbconn.Open()

 sql = "Create Table Products (ProductID VarChar (4) Primary Key, ProductName

VarChar (20), UnitPrice Money,QtyAvailable Integer)"

 dbcomm = New OleDbCommand(sql, dbconn)

 dbcomm.ExecuteNonQuery()

dbconn.Close()

end sub

</script>

Inserting Data into Table

<%@ Import Namespace="System.Data.OleDb" %>

<script runat="server">

sub Page_Load

 Dim dbconn, sql, dbcomm

 dbconn = New

OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;datasource=" &

Server.MapPath("Bank.mdb"))

 dbconn.Open()

 sql = "Insert into customer values(3,'Aaryan','Pkr',34,'9803456789','ar@gmail.com')"

 dbcomm = New OleDbCommand(sql, dbconn)

 dbcomm.ExecuteNonQuery()

 dbconn.Close()

end sub

</script>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 47

Deleting Data from Table

<%@ Import Namespace="System.Data.OleDb" %>

<script runat="server">

sub Page_Load

 Dim dbconn, sql, dbcomm

 dbconn = New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data

source=" & Server.MapPath("Bank.mdb"))

 dbconn.Open()

 sql = "Delete from customer where Cid=1"

 dbcomm = New OleDbCommand(sql, dbconn)

 dbcomm.ExecuteNonQuery()

dbconn.Close()

end sub

</script>

Updating Data in the Table

<%@ Import Namespace="System.Data.OleDb" %>

<script runat="server">

sub Page_Load

 Dim dbconn, sql, dbcomm

 dbconn = New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data

source=" & Server.MapPath("Bank.mdb"))

 dbconn.Open()

 sql = "update customer set Address='Ktm' where Cid=2"

 dbcomm = New OleDbCommand(sql, dbconn)

 dbcomm.ExecuteNonQuery()

dbconn.Close()

end sub

</script>

A Sample GUI Based Form with Database Connectivity

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 48

<%@ Page Language="VB"%>

<%@ Import Namespace="System.Data.OleDb"%>

<html>

<script language="VB" runat=server>

Sub Insert_Click(Src As Object, E As EventArgs)

' Connect to Database

 Dim cnAccess As New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data

source=" & Server.MapPath("Bank.mdb"))

cnAccess.Open()

dim sID, sFName, sLName, sAge, sInsertSQL as string

sID = eID.Text

sFName = FName.Text

sLName = LName.Text

sAge = Age.Text

'Make the insert statement

 sInsertSQL = "insert into employees values(" & sID & ",'" & sFName & "','" &

sLName & "'," & sAge & ")"

'Make the OleDbCommand object

dim cmdInsert as New OleDbCommand(sInsertSQL,cnAccess)

' This not a query so we do not expect any return data so use

' the ExecuteNonQuery method

cmdInsert.ExecuteNonQuery()

response.write ("Data recorded!")

End Sub

</script>

<body>

<form id="Form1" runat=server>

<h3>Enter Employee Details</h3>

<table>

<tr>

<td>ID:</td>

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 49

<td><asp:textbox id="eID" runat="server"/></td>

</tr>

<tr>

<td>First Name:</td>

<td><asp:textbox id="FName" runat="server"/></td>

</tr>

<tr>

<td>Last Name:</td>

<td><asp:textbox id="LName" runat="server"/></td>

</tr>

<tr>

<td>Age:</td>

<td><asp:textbox id="Age" runat="server"/></td>

</tr>

</table>

<asp:button ID="Button1" text="Insert" OnClick="Insert_Click" runat=server/>

<p>

<asp:Label id="Msg" ForeColor="red" Font-Name="Verdana" Font-Size=

"10" runat=server />

</form>

</body>

</html>

Handling Session and Cookie in ASP.net

A session is defined as the period of time that a unique user interacts with a Web application.

Active Server Pages (ASP) developers who wish to retain data for unique user sessions can use

an intrinsic feature known as session state. Programmatically, session state is nothing more than

memory in the shape of a dictionary or hash table, e.g. key-value pairs, which can be set and read

for the duration of a user's session. For example, a user selects stocks to track and the Web

application can store these values in the user's ASP session instance:

Session("Stocks") = "MSFT; VRSN; GE"

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 50

On subsequent pages these values are read and the Web application has access to these values

without the user re-entering them:

Dim StockString

StockString = Session("Stocks")

ASP maintains session state by providing the client with a unique key assigned to the user when

the session begins. This key is stored in an HTTP cookie that the client sends to the server on

each request. The server can then read the key from the cookie and re-inflate the server session

state.

Problems with ASP Session State

ASP developers know session state as a great feature, but one that is somewhat limited. These

limitations include:

 Process dependent. ASP session state exists in the process that hosts ASP; thus the

actions that affect the process also affect session state. When the process is recycled or

fails, session state is lost.

 Server farm limitations. As users move from server to server in a Web server farm,

their session state does not follow them. ASP session state is machine specific. Each ASP

server provides its own session state, and unless the user returns to the same server, the

session state is inaccessible. While network IP level routing solutions can solve such

problems, by ensuring that client IPs are routed to the originating server, some ISPs

choose to use a proxy load-balancing solution for their clients. Most infamous of these is

AOL. Solutions such as AOL's prevent network level routing of requests to servers

because the IP addresses for the requestor cannot be guaranteed to be unique.

 Cookie dependent. Clients that don't accept HTTP cookies can't take advantage of

session state. Some clients believe that cookies compromise security and/or privacy and

thus disable them, which disables session state on the server.

These are several of the problem sets that were taken into consideration in the design of

ASP.NET session state.

ASP.NET Session State

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 51

ASP.NET session state solves all of the above problems associated with classic ASP session

state:

 Process independent. ASP.NET session state is able to run in a separate process from

the ASP.NET host process. If session state is in a separate process, the ASP.NET process

can come and go while the session state process remains available. Of course, you can

still use session state in process similar to classic ASP, too.

 Support for server farm configurations. By moving to an out-of-process model,

ASP.NET also solves the server farm problem. The new out-of-process model allows all

servers in the farm to share a session state process. You can implement this by changing

the ASP.NET configuration to point to a common server.

 Cookie independent. Although solutions to the problem of cookieless state management

do exist for classic ASP, they're not trivial to implement. ASP.NET, on the other hand,

reduces the complexities of cookieless session state to a simple configuration setting.

Using ASP.NET Session State

Before we use session state, we need an application to test it with. Below is the code for a simple

Visual Basic application that writes to and reads from session state, SessionState.aspx:

<Script runat=server>

 Sub Session_Add(sender As Object, e As EventArgs)

 Session("MySession") = text1.Value

 span1.InnerHtml = "Session data updated! <P> Your session contains: <font

color=red>" + Session("MySession").ToString() + ""

 End Sub

 Sub CheckSession(sender As Object, e As EventArgs)

 If (Session("MySession") = "") Then

 span1.InnerHtml = "NOTHING, SESSION DATA LOST!"

 Else

 span1.InnerHtml = "Your session contains: " +

Session("MySession").ToString() + ""

 End If

 End Sub

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 52

</Script>

<form id="Form1" runat=server>

 <input id=text1 type=text runat=server>

 <input id="Submit1" type=submit runat=server OnServerClick="Session_Add"

Value="Add to Session State">

 <input id="Submit2" type=submit runat=server OnServerClick="CheckSession"

Value="View Session State">

</form>

<hr size=1>

This simple page wires up two server-side events for the Add and View buttons, and simply sets

the session state to the value in the text box. There are four general configuration settings we can

look at in more detail: in-process mode, out-of-process mode, SQL Server mode, and Cookieless.

Handling Cookies

A cookie is a small bit of text that accompanies requests and pages as they go between the Web

server and browser. The cookie contains information the Web application can read whenever the

user visits the site. For example, if a user requests a page from your site and your application

sends not just a page, but also a cookie containing the date and time, when the user's browser

gets the page, the browser also gets the cookie, which it stores in a folder on the user's hard disk.

Later, if user requests a page from your site again, when the user enters the URL the browser

looks on the local hard disk for a cookie associated with the URL. If the cookie exists, the

browser sends the cookie to your site along with the page request. Your application can then

determine the date and time that the user last visited the site. You might use the information to

display a message to the user or check an expiration date.

Cookies are associated with a Web site, not with a specific page, so the browser and server will

exchange cookie information no matter what page the user requests from your site. As the user

visits different sites, each site might send a cookie to the user's browser as well; the browser

stores all the cookies separately. Cookies help Web sites store information about visitors. More

generally, cookies are one way of maintaining continuity in a Web application—that is, of

performing state management. Except for the brief time when they are actually exchanging

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 53

information, the browser and Web server are disconnected. Each request a user makes to a Web

server is treated independently of any other request. Many times, however, it's useful for the

Web server to recognize users when they request a page. For example, the Web server on a

shopping site keeps track of individual shoppers so the site can manage shopping carts and other

user-specific information. A cookie therefore acts as a kind of calling card, presenting pertinent

identification that helps an application know how to proceed.

Cookies are used for many purposes, all relating to helping the Web site remember users. For

example, a site conducting a poll might use a cookie simply as a Boolean value to indicate

whether a user's browser has already participated in voting so that the user cannot vote twice. A

site that asks a user to log on might use a cookie to record that the user already logged on so that

the user does not have to keep entering credentials.

Page Directives

Page directives are used to set various attributes about a page. The ASP Engine and the compiler

follow these directives to prepare a page. There are many kinds of directives. The most

frequently ones are the following: @ Page,@ Import,@ Implements, @ Register,@ OutputCache

and @ Assembly directives. These directives can be placed anywhere in a page, however, these

are typically placed at the top.

1. @ Page: We may use this directive to declare many page-related attributes about a

particular page. For example, we use this directive to declare the language to be used in a

page, such as <%@ Page Language=”VB” Debug=”true” %> page.

2. @ Import: We use this directive to import a namespace in the page class file. For

example, in the following directive, we are importing the System.Data.OleDb namespace

in our page: <%@ Import Namespace=”System.Data.OleDb” %>.

3. @ OutputCache: We can use this directive to specify how to cache the page. In the

following example, we are setting the duration that a page or user control is output

cached:<%@ OutputCache Duration=”10” /%>.

4. @ Register: This directive is used to register a custom control in a page. In the following

example, we are registering one of our user custom controls in page: <%@ Register

tagprefix =”utoledo” tagname=”Time” Src=”TimeUserControl.ascx”%>.

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 54

5. @ Assembly We use this directive to link to an assembly to the current page or user

control. The following example shows how to link to an assembly-named payroll: <%@

Assembly Name=”Payroll” %>.

6. @ Implements This directive enables us to implement an interface in our page. In the

following example, we are implementing the IpostBackEventHandler interface in one of

our user controls:

<%@ ImplementsInterface=”System.Web.UI.IPostBackEventHandler” %>.

Tag Libraries

In a Web application, a common design goal is to separate the display code from business logic.

Java tag libraries are one solution to this problem. Tag libraries allow you to isolate business

logic from the display code by creating a Tag class (which performs the business logic) and

including an HTML-like tag in your JSP page. When the Web server encounters the tag within

your JSP page, the Web server will call methods within the corresponding Java Tag class to

produce the required HTML content.

Microsoft® ASP.NET uses Web form controls to serve the same purpose as Java tag

libraries. Similar to JSP tags, Web form controls are added to an ASP.NET Web page

using an HTML-like syntax. Unlike JSP tags however, a Web form control is actually an

object that is contained within your ASP.NET page. This allows you to access information

from your Web form control both before and after the page is loaded. The Microsoft® .NET

Framework contains many ready-to-use Web form controls, including a Calendar Web

form control and a Crystal Reports Viewer Web control. If you require different functionality

than is provided by these Web form controls, you can either extend the existing Web form

controls or create your own Web form controls by implementing various interfaces.

Tag libraries were designed so that Java code could be executed within a JSP page without using

Java script blocks, which clutter up the HTML and break the design goal of separating display

code from business logic. Instead of script blocks, tag libraries allow you to create custom

HTML-like tags that map to a Java class that performs the business logic. Groups of these

HTML-like tags are called tag libraries. Creating and using a custom tag library involves three

things:

 One or more classes that implement the javax.servlet.jsp.tagext.Tag interface. The Tag

interface defines six methods that allow your JSP page to use the class to create the

desired HTML output. There are also classes/interfaces that implement/extend the Tag

interface, such as TagSupport and BodyTagSupport, to make it easier for you to

develop your custom tag.

Downloaded from CSIT Tutor

Web Technology Chapter- Server Side Scripting with ASP.NET

 55

 An XML document that describes your tag library. Tag library description files must

conform to the JSP tag library description DTD, and generally have an extension of "tld".

 Importing the tag library to the JSP page using the taglib directive.

Once the three requirements are met, you can use the tags in your tag library anywhere within

your JSP page.

For detail explore: http://msdn.microsoft.com/en-us/library/aa478990.aspx

Downloaded from CSIT Tutor

http://msdn.microsoft.com/en-us/library/aa478990.aspx

	Unit 1
	Unit 2
	Unit 3
	Unit 4

